The Steroid Receptor RNA Activator 1 (SRA1) has originally been described as a noncoding RNA specifically activating steroid receptor transcriptional activity. We have, however, identified, in human breast tissue, exon- 1 extended SRA1 isoforms containing two initiating AUG codons and encoding a protein we called SRAP. We recently reported a decreased estrogen receptor activity in breast cancer cells overexpressing SRAP, suggesting antagonist roles played by SRA1 RNA and SRAP. SRA1 appears to be the first example of a molecule active both at the RNA and at the protein level. No data are currently available regarding the mechanisms possibly involved in the generation of coding and noncoding functional SRA1 RNAs. Using 5'-Rapid Amplification of cDNA Extremities (5'-RACE), we have herein identified several putative transcription initiation sites surrounding the second methionine codon and used to generate coding SRA1 transcripts. In the process, we also identified an alternatively spliced noncoding SRA1 transcript still containing an intron-1 sequence. Using targeted RT-PCR approaches, we confirmed the presence in breast cancer cell lines of SRA1 RNAs containing a full as well as a partial intron-1 sequence and established that the relative proportion of these RNAs varied within breast cancer cell lines. Using a "minigene" strategy, we also showed that artificial RNAs containing the SRA1 intron-1 sequence are alternatively spliced in breast cancer cell lines. Interestingly, the splicing pattern of the minigene products parallels the one of the endogenous SRA1 transcripts. Altogether, our data suggest that the primary genomic sequence in and around intron-1 is sufficient to lead to a differential splicing of this intron. We propose that alternative splicing of intron-1 is one mechanism used by breast cancer cells to regulate the balance between coding and functional noncoding SRA1 RNAs.
The association of familial Alzheimer's disease (FAD) with mutations in Alzheimer's amyloid precursor protein (APP) suggests important functions for APP in the central nervous system. Mutations in APP impair its function to confer resistance to apoptosis in cells under stress, and this may contribute to neurodegeneration in Alzheimer's disease (AD) brain, but the mechanisms involved are unknown. We examined the role of the late Simian virus 40 transcription factor (LSF), in anti-apoptotic APP pathways. We show that in APP-deficient B103 cells, expression of wild-type human APP (hAPPwt), but not of FAD-mutant APP, inhibited staurosporine (STS)-induced apoptosis. This inhibition was further enhanced by expression of LSFwt, although LSFwt alone was not sufficient to inhibit STS-induced apoptosis. In contrast, expression of dominant-negative LSF led to a marked increase in STS-induced cell death that was significantly blocked by hAPPwt. These effects of APP were accompanied by LSF nuclear translocation and dependent gene transcription. The activation of LSF is dependent on the expression of hAPPwt and is inhibited by the expression of dominant-negative forms of either phosphoinositide 3-kinase or Akt. These results demonstrate that LSF activation is required for the neuroprotective effects of APP via phosphoinositide 3-kinase/Akt signalling. Alterations in this pathway by aberrations in APP and/or LSF could promote neuronal loss in AD brain, due to secondary insults. Thus a link is established between APP and LSF and AD.
Transforming growth factor beta (TGF-beta) is a biologically multipotent regulatory protein implicated in functions that include the regulation of cellular growth, differentiation, extracellular matrix formation, and wound healing. It also plays a role in the pathologies of Alzheimer's disease, cancer and autoimmune disorders. TGF-beta modulates gene expression by affecting transcriptional activation and mRNA turnover rate. Steady-state mRNA levels depend on both the transcriptional activity and mRNA half-life. The stability of mRNA can be modified by the binding of trans-acting factors to cis-elements on the message. These can protect the mRNA from cleavage by RNAses, or they may promote mRNA cleavage. Changes in mRNA stability can lead to changes in the proteome and subsequently in cellular metabolism. The SMAD family of proteins has been implicated in the transduction of the TGF-beta signal, where they regulate transcriptional activity. This review attempts to provide new insights into the role played by TGF-beta in the regulation of mRNA turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.