We analyze the convergence behavior of collocation schemes applied to approximate solutions of BVPs in nonlinear index 1 DAEs, which exhibit a critical point at the left boundary. Such a critical point of the DAE causes a singularity in the inherent nonlinear ODE system. In particular, we focus on the case when the inherent ODE system is singular with a singularity of the first kind and apply polynomial collocation to the original DAE system. We show that for a well-posed boundary value problem in DAEs having a sufficiently smooth solution, the global error of the collocation scheme converges with the so-called stage order. Due to the singularity, superconvergence does not hold in general. The theoretical results are supported by numerical experiments.
We analyze the convergence behavior of collocation schemes applied to approximate solutions of BVPs in nonlinear index 1 DAEs, which exhibit a critical point at the left boundary. Such a critical point of the DAE causes a singularity in the inherent nonlinear ODE system. In particular, we focus on the case when the inherent ODE system is singular with a singularity of the first kind and apply polynomial collocation to the original DAE system. We show that for a certain class of well-posed boundary value problems in DAEs having a sufficiently smooth solution, the global error of the collocation scheme converges uniformly with the so-called stage order. Due to the singularity, superconvergence at the mesh points does not hold in general. The theoretical results are supported by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.