Alternative splicing is a major contributor to transcriptome and proteome diversity in health and disease. A plethora of tools have been developed for studying alternative splicing in RNA-seq data. Previous benchmarks focused on isoform quantification and mapping. They neglected event detection tools, which arguably provide the most detailed insights into the alternative splicing process. DICAST offers a modular and extensible framework for the analysis of alternative splicing integrating 11 splice-aware mapping and eight event detection tools. We benchmark all tools extensively on simulated as well as whole blood RNA-seq data. STAR and HISAT2 demonstrated the best balance between performance and run time. The performance of event detection tools varies widely with no tool outperforming all others. DICAST allows researchers to employ a consensus approach to consider the most successful tools jointly for robust event detection. Furthermore, we propose the first reporting standard to unify existing formats and to guide future tool development.
Motivation As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. Gold-standard, experimental techniques like flow cytometry or immunohistochemistry are resource-intensive and cannot be systematically applied to the numerous cell types and tissues profiled with high-throughput transcriptomics. The simulation of ‘pseudo-bulk’ data, generated by aggregating single-cell RNA-seq expression profiles in pre-defined proportions, offers a scalable and cost-effective alternative. This makes it feasible to create in silico gold standards that allow fine-grained control of cell-type fractions not conceivable in an experimental setup. However, at present, no simulation software for generating pseudo-bulk RNA-seq data exists. Results We developed SimBu, an R package capable of simulating pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modeling of cell-type-specific mRNA bias using experimentally derived or data-driven scaling factors. Here, we show that SimBu can generate realistic pseudo-bulk data, recapitulating the biological and statistical features of real RNA-seq data. Finally, we illustrate the impact of mRNA bias on the evaluation of deconvolution tools and provide recommendations for the selection of suitable methods for estimating mRNA content. SimBu is a user-friendly and flexible tool for simulating realistic pseudo-bulk RNA-seq datasets serving as in silico gold-standard for assessing cell-type deconvolution methods. Availability and implementation SimBu is freely available at https://github.com/omnideconv/SimBu as an R package under the GPL-3 license. Supplementary information Supplementary data are available at Bioinformatics online.
16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco’s capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.
Alternative splicing is a major contributor to transcriptome and proteome diversity in health and disease. A plethora of tools have been developed for studying alternative splicing in RNA-seq data. Previous benchmarks focused on isoform quantification and mapping. They neglected event detection tools, which arguably provide the most detailed insights into the alternative splicing process. DICAST offers a modular and extensible framework for analysing alternative splicing integrating eleven splice-aware mapping and eight event detection tools. We benchmark all tools extensively on simulated as well as whole blood RNA-seq data. STAR and HISAT2 demonstrated the best balance between performance and run time. The performance of event detection tools varies widely with no tool outperforming all others. DICAST allows researchers to employ a consensus approach to consider the most successful tools jointly for robust event detection. Furthermore, we propose the first reporting standard to unify existing formats and to guide future tool development.
As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. Goldstandard, experimental techniques like flow cytometry or immunohistochemistry are resource-intensive and cannot be systematically applied to the numerous cell types and tissues profiled with high-throughput transcriptomics. The simulation of 'pseudo-bulk' data, generated by aggregating single-cell RNA-seq (scRNA-seq) expression profiles in pre-defined proportions, offers a scalable and cost-effective alternative. This makes it feasible to create in silico gold standards that allow fine-grained control of cell-type fractions not conceivable in an experimental setup. However, at present, no simulation software for generating pseudo-bulk RNA-seq data exists. We developed SimBu, an R package capable of simulating pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modelling of cell-type-specific mRNA bias using experimentally-derived or data-driven scaling factors. Here, we show that SimBu can generate realistic pseudo-bulk data, recapitulating the biological and statistical features of real RNA-seq data. Finally, we illustrate the impact of mRNA bias on the evaluation of deconvolution tools and provide recommendations for the selection of suitable methods for estimating mRNA content. SimBu is a user-friendly and flexible tool for simulating realistic pseudo-bulk RNA-seq datasets serving as in silico gold-standard for assessing cell-type deconvolution methods. SimBu is freely available at https://github.com/omnideconv/SimBu as an R package under the GPL-3 license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.