Background: Peripheral Nerve Injury (PNI) represents a major clinical and economic burden. Despite the ability of peripheral neurons to regenerate their axons after an injury, patients are often left with motor and/or sensory disability and may develop chronic pain. Successful regeneration and target organ reinnervation require comprehensive transcriptional changes in both injured neurons and support cells located at the site of injury. The expression of most of the genes required for axon growth and guidance and for synapsis formation is repressed by a single master transcriptional regulator, the Repressor Element 1 Silencing Transcription factor (REST). Sustained increase of REST levels after injury inhibits axon regeneration and leads to chronic pain. REST is stabilized by the Carboxy-terminal domain small phosphatase 1 (CTDSP1), which prevents REST targeting to the proteasome. Here, we explore whether knockdown of CTDSP1 promotes neurotrophic factor expression in mesenchymal progenitor cells (MPCs), a type of support cells that can be harvested from the site of injury during surgical debridement, and in dorsal root ganglion (DRG) neurons. In addition, we explore whether CTDSP1 knockdown supports DRG neurite regeneration. Methods: Cultured human MPCs or rat DRG neurons were transfected with REST or CTDSP1 specific siRNA. Neurotrophic factor expression was analyzed by RT-qPCR and Western Blot. Brain-derived Neurotrophic Factor (BDNF) in cell culture medium was quantified by ELISA. Axon regeneration was quantified measuring the length of the longest neurite of a neuron. Results: Knockdown of REST or CTDSP1 in MPCs results in increased expression of BDNF and nerve growth factor (NGF). In addition, knockdown of CTDSP1 leads to increased release of BDNF in cell culture medium from MPCs and to reduced levels of REST protein. Finally, knockdown of CTDSP1 in DRG neurons results in increased levels of BDNF and increased DRG neurite growth rate.Conclusions: CTDSP1 knockdown promotes neurotrophic factor expression in both DRG neurons and the support cells MPCs. In addition, it promotes DRG neuron regeneration. Therapeutics targeting CTDSP1 activity may represent a novel epigenetic strategy to promote peripheral nerve regeneration after PNI by promoting the regenerative program repressed by injury-induced increased levels of REST in both neurons and support cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.