Events are a core concept of spatial information, but locationbased social media (LBSM) provide information on reactions to events. Individuals have varied degrees of agency in initiating, reacting to or modifying the course of events, and reactions include observations of occurrence, expressions containing sentiment or emotions, or a call to action. Key characteristics of reactions include referent events and information about who reacted, when, where and how. Collective reactions are composed of multiple individual reactions sharing common referents. They can be characterized according to the following dimensions: spatial, temporal, social, thematic and interlinkage. We present a conceptual framework, which allows characterization and comparison of collective reactions. For a thematically well-defined class of event such as storms, we can explore differences and similarities in collective attribution of meaning across space and time. Other events may have very complex spatio-temporal signatures (e.g. political processes such as Brexit or elections), which can be decomposed into series of individual events (e.g. a temporal window around the result of a vote). The purpose of our framework is to explore ways in which collective reactions to events in LBSM can be described and underpin the development of methods for analysing and understanding collective reactions to events.
Through volunteering data, people can help assess information on various aspects of their surrounding environment. Particularly in natural resource management, Volunteered Geographic Information (VGI) is increasingly recognized as a significant resource, for example, supporting visitation pattern analysis to evaluate collective values and improve natural well-being. In recent years, however, user privacy has become an increasingly important consideration. Potential conflicts often emerge from the fact that VGI can be re-used in contexts not originally considered by volunteers. Addressing these privacy conflicts is particularly problematic in natural resource management, where visualizations are often explorative, with multifaceted and sometimes initially unknown sets of analysis outcomes. In this paper, we present an integrated and component-based approach to privacy-aware visualization of VGI, specifically suited for application to natural resource management. As a key component, HyperLogLog (HLL)—a data abstraction format—is used to allow estimation of results, instead of more accurate measurements. While HLL alone cannot preserve privacy, it can be combined with existing approaches to improve privacy while, at the same time, maintaining some flexibility of analysis. Together, these components make it possible to gradually reduce privacy risks for volunteers at various steps of the analytical process. A specific use case demonstration is provided, based on a global, publicly-available dataset that contains 100 million photos shared by 581,099 users under Creative Commons licenses. Both the data processing pipeline and resulting dataset are made available, allowing transparent benchmarking of the privacy–utility tradeoffs.
Social media platforms such as Twitter are extensively used for expressing and exchanging thoughts, opinions, ideas, and feelings, i.e., reactions concerning a topic or an event. Factual information about an event to which people are reacting can be obtained from different types of (geo-)sensors, official authorities, or the public press. However, these sources hardly reveal the emotional or attitudinal impact of events on people, which is, for example, reflected in their reactions on social media. Two approaches that utilize emojis are proposed to obtain the sentiment and emotions contained in social media reactions. Subsequently, these two approaches, along with visualizations that focus on space, time, and topic, are applied to Twitter reactions in the example case of Brexit.
Social media data is heavily used to analyze and evaluate situations in times of disasters, and derive decisions for action from it. In these critical situations, it is not surprising that privacy is often considered a secondary problem. In order to prevent subsequent abuse, theft or public exposure of collected datasets, however, protecting the privacy of social media users is crucial. Avoiding unnecessary data retention is an important question that is currently largely unsolved. There are a number of technical approaches available, but their deployment in disaster management is either impractical or requires special adaption, limiting its utility. In this case study, we explore the deployment of a cardinality estimation algorithm called HyperLogLog into disaster management processes. It is particularly suited for this field, because it allows to stream data in a format that cannot be used for purposes other than the originally intended. We develop and conduct a focus group discussion with teams of social media analysts. We identify challenges and opportunities of working with such a privacy-enhanced social media data format and compare the process with conventional techniques. Our findings show that, with the exception of training scenarios, deploying HyperLogLog in the data acquisition process will not distract the data analysis process. Instead, several benefits, such as improved working with huge datasets, may contribute to a more widespread use and adoption of the presented technique, which provides a basis for a better integration of privacy considerations in disaster management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.