We present a fluorescence excitation-emission-matrix spectrometer with superior data acquisition rates over previous instruments. Light from a white light emitting diode (LED) source is dispersed onto a digital micromirror array (DMA) and encoded using binary n-size Walsh functions ("barcodes"). The encoded excitation light is used to irradiate the liquid sample and its fluorescence is dispersed and detected using a conventional array spectrometer. After exposure to excitation light encoded in n different ways, the 2-dimensional excitation-emission-matrix (EEM) spectrum is obtained by inverse Hadamard transformation. Using this technique we examined the kinetics of the fluorescence of rhodamine B as a function of temperature and the acid-driven demetalation of chlorophyll-a into pheophytin-a. For these experiments, EEM spectra with 31 excitation channels and 2048 emission channels were recorded every 15 s. In total, data from over 3000 EEM spectra were included in this report. It is shown that the increase in data acquisition rate can be as high as [{n(n + 1)}/2]-fold over conventional EEM spectrometers. Spectral acquisition rates of more than two spectra per second were demonstrated.
Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.