In contemporary muscle-computer interfaces for upper limb prosthetics there is often a trade-off between control robustness and range of executable movements. As a very low movement error rate is necessary in practical applications, this often results in a quite severe limitation of controllability; a problem growing ever more salient as the mechanical sophistication of multifunctional myoelectric prostheses continues to improve. A possible remedy for this could come from the use of multi-label machine learning methods, where complex movements can be expressed as the superposition of several simpler movements. Here, we investigate this claim by applying a multi-labeled classification scheme in the form of a deep convolutional neural network (CNN) to high density surface electromyography (HD-sEMG) recordings. We use 16 independent labels to model the movements of the hand and forearm state, representing its major degrees of freedom. By training the neural network on 16 × 8 sEMG image sequences 24 samples long with a sampling rate of 2048 Hz to detect these labels, we achieved a mean exact match rate of 78.7% and a mean Hamming loss of 2.9% across 14 healthy test subjects. With this, we demonstrate the feasibility of highly versatile and responsive sEMG control interfaces without loss of accuracy.
Control of contemporary, multi-joint prosthetic hands is commonly realized by using electromyographic signals from the muscles remaining after amputation at the forearm level. Although this principle is trying to imitate the natural control structure where muscles control the joints of the hand, in practice, myoelectric control provides only basic hand functions to an amputee using a dexterous prosthesis. This study aims to provide an annotated database of high-density surface electromyographic signals to aid the efforts of designing robust and versatile electromyographic control interfaces for prosthetic hands. The electromyographic signals were recorded using 128 channels within two electrode grids positioned on the forearms of 20 able-bodied volunteers. The participants performed 65 different hand gestures in an isometric manner. The hand movements were strictly timed using an automated recording protocol which also synchronously recorded the electromyographic signals and hand joint forces. To assess the quality of the recorded signals several quantitative assessments were performed, such as frequency content analysis, channel crosstalk, and the detection of poor skin-electrode contacts.
Background Processing the surface electromyogram (sEMG) to decode movement intent is a promising approach for natural control of upper extremity prostheses. To this end, this paper introduces and evaluates a new framework which allows for simultaneous and proportional myoelectric control over multiple degrees of freedom (DoFs) in real-time. The framework uses multitask neural networks and domain-informed regularization in order to automatically find nonlinear mappings from the forearm sEMG envelope to multivariate and continuous encodings of concurrent hand- and wrist kinematics, despite only requiring categorical movement instruction stimuli signals for calibration. Methods Forearm sEMG with 8 channels was collected from healthy human subjects (N = 20) and used to calibrate two myoelectric control interfaces, each with two output DoFs. The interfaces were built from (I) the proposed framework, termed Myoelectric Representation Learning (MRL), and, to allow for comparisons, from (II) a standard pattern recognition framework based on Linear Discriminant Analysis (LDA). The online performances of both interfaces were assessed with a Fitts’s law type test generating 5 quantitative performance metrics. The temporal stabilities of the interfaces were evaluated by conducting identical tests without recalibration 7 days after the initial experiment session. Results Metric-wise two-way repeated measures ANOVA with factors method (MRL vs LDA) and session (day 1 vs day 7) revealed a significant ($$p<0.05$$ p < 0.05 ) advantage for MRL over LDA in 5 out of 5 performance metrics, with metric-wise effect sizes (Cohen’s $$d$$ d ) separating MRL from LDA ranging from $$\left|d\right|=0.62$$ d = 0.62 to $$\left|d\right|=1.13$$ d = 1.13 . No significant effect on any metric was detected for neither session nor interaction between method and session, indicating that none of the methods deteriorated significantly in control efficacy during one week of intermission. Conclusions The results suggest that MRL is able to successfully generate stable mappings from EMG to kinematics, thereby enabling myoelectric control with real-time performance superior to that of the current commercial standard for pattern recognition (as represented by LDA). It is thus postulated that the presented MRL approach can be of practical utility for muscle-computer interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.