Efficient fault diagnosis of electrical and mechanical anomalies in induction motors (IMs) is challenging but necessary to ensure safety and economical operation in industries. Research has shown that bearing faults are the most frequently occurring faults in IMs. The vibration signals carry rich information about bearing health conditions and are commonly utilized for fault diagnosis in bearings. However, collecting these signals is expensive and sometimes impractical because it requires the use of external sensors. The external sensors demand enough space and are difficult to install in inaccessible sites. To overcome these disadvantages, motor current signal-based bearing fault diagnosis methods offer an attractive solution. As such, this paper proposes a hybrid motor-current data-driven approach that utilizes statistical features, genetic algorithm (GA) and machine learning models for bearing fault diagnosis. First, the statistical features are extracted from the motor current signals. Second, the GA is utilized to reduce the number of features and select the most important ones from the feature database. Finally, three different classification algorithms namely KNN, decision tree, and random forest, are trained and tested using these features in order to evaluate the bearing faults. This combination of techniques increases the accuracy and reduces the computational complexity. The experimental results show that the three classifiers achieve an accuracy of more than 97%. In addition, the evaluation parameters such as precision, F1-score, sensitivity, and specificity show better performance. Finally, to validate the efficiency of the proposed model, it is compared with some recently adopted techniques. The comparison results demonstrate that the suggested technique is promising for diagnosis of IM bearing faults.
The vibration signals of gearbox gear fault signatures are informative components that can be used for gearbox fault diagnosis and early fault detection. However, the vibration signals are normally non-linear and non-stationary, and they contain background noise caused by data acquisition systems and the interference of other machine elements. Especially in conditions with varying rotational speeds, the informative components are blended with complex, unwanted components inside the vibration signal. Thus, to use the informative components from a vibration signal for gearbox fault diagnosis, the noise needs to be properly distilled from the informational signal as much as possible before analysis. This paper proposes a novel gearbox fault diagnosis method based on an adaptive noise reducer–based Gaussian reference signal (ANR-GRS) technique that can significantly reduce noise and improve classification from a one-against-one, multiclass support vector machine (OAOMCSVM) for the fault types of a gearbox. The ANR-GRS processes the shaft rotation speed to access and remove noise components in the narrowbands between two consecutive sideband frequencies along the frequency spectrum of a vibration signal, enabling the removal of enormous noise components with minimal distortion to the informative signal. The optimal output signal from the ANR-GRS is then extracted into many signal feature vectors to generate a qualified classification dataset. Finally, the OAOMCSVM classifies the health states of an experimental gearbox using the dataset of extracted features. The signal processing and classification paths are generated using the experimental testbed. The results indicate that the proposed method is reliable for fault diagnosis in a varying rotational speed gearbox system.
Rotating machines represent a class of nonlinear, uncertain, and multiple-degrees-of-freedom systems that are used in various applications. The complexity of the system’s dynamic behavior and uncertainty result in substantial challenges for fault estimation, detection, and identification in rotating machines. To address the aforementioned challenges, this paper proposes a novel technique for fault diagnosis of a rolling-element bearing (REB), founded on a machine-learning-based advanced fuzzy sliding mode observer. First, an ARX-Laguerre algorithm is presented to model the bearing in the presence of noise and uncertainty. In addition, a fuzzy algorithm is applied to the ARX-Laguerre technique to increase the system’s modeling accuracy. Next, the conventional sliding mode observer is applied to resolve the problems of fault estimation in a complex system with a high degree of uncertainty, such as rotating machinery. To address the problem of chattering that is inherent in the conventional sliding mode observer, the higher-order super-twisting (advanced) technique is introduced in this study. In addition, the fuzzy method is applied to the advanced sliding mode observer to improve the accuracy of fault estimation in uncertain conditions. As a result, the advanced fuzzy sliding mode observer adaptively improves the reliability, robustness, and estimation accuracy of rolling-element bearing fault estimation. Then, the residual signal delivered by the proposed methodology is split in the windows and each window is characterized by a numerical parameter. Finally, a machine learning technique, called a decision tree, adaptively derives the threshold values that are used for problems of fault detection and fault identification in this study. The effectiveness of the proposed algorithm is validated using a publicly available vibration dataset of Case Western Reverse University. The experimental results show that the machine learning-based advanced fuzzy sliding mode observation methodology significantly improves the reliability and accuracy of the fault estimation, detection, and identification of rolling element bearing faults under variable crack sizes and load conditions.
The complex nature of rubbing faults makes it difficult to use traditional signal analysis methods for feature extraction. Various time-frequency analysis approaches based on signal decomposition, such as empirical mode decomposition (EMD) and ensemble EMD (EEMD), have been widely utilized recently to analyze rub-impact faults. However, traditional EMD suffers from “mode-mixing”, and in both EMD and EEMD the relevance of the extracted components to rubbing processes must be determined. In this paper, we introduce a new informative intrinsic mode function (IMF) selection method for EEMD and a hybrid feature model for diagnosing rub-impact faults of various intensities. Our method uses a novel selection procedure that combines the degree-of-presence ratio of rub impact and a Kullback–Leibler divergence-based similarity measure into an IMF quality metric with adaptive threshold-based selection to pick the meaningful signal-dominant modes. Signals reconstructed using the selected IMFs contained explicit information about the rubbing faults and are used for hybrid feature extraction. Experimental results demonstrated that the proposed approach effectively defines meaningful IMFs for rubbing processes, and the presented hybrid feature model allows for the classification of rub-impact faults of various intensities with good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.