Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global speciesoccurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.royalsocietypublishing.org/journal/rspb Proc. R. Soc. B 286: 20190745
Many models to explain the differences in the flora and fauna of tropical and temperate regions assume that whole clades are restricted to the tropics. We develop methods to assess the extent to which biotas are geographically discrete, and find that transition zones between regions occupied by tropical-associated or temperate-associated biotas are often narrow, suggesting a role for freezing temperatures in partitioning global biotas. Across the steepest tropical-temperate gradient in the world, that of the Himalaya, bird communities below and above the freezing line are largely populated by different tropical and temperate biotas with links to India and Southeast Asia, or to China respectively. The importance of the freezing line is retained when clades rather than species are considered, reflecting confinement of different clades to one or another climate zone. The reality of the sharp tropical-temperate boundary adds credence to the argument that exceptional species richness in the tropics reflects species accumulation over time, with limited transgressions of species and clades into the temperate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.