Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.
Several classes of glycerolipids were isolated from the total lipids of the algae Saccharina cichorioides, Eualaria fistulosa, Fucus evanescens, Sargassum pallidum, Silvetia babingtonii (Ochrophyta, Phaeophyceae), Tichocarpus crinitus, and Neorhodomela larix (Rhodophyta, Florideophyceae). The structures of these lipids were examined by nuclear magnetic resonance (NMR) spectroscopy, including 1D ((1) H and (13) C) and 2D (COSY, HSQC and HMBC) experiments. All of the investigated algae included common galactolipids and sulfonoglycolipids as the major glycolipids. Minor glycolipids isolated from S. cichorioides, T. crinitus, and N. laris were identified as lyso-galactolipids with a polar group consisted of the galactose. Comparison of the (1) H NMR data of minor nonpolar lipids isolated from the extracts of the brown algae S. pallidum and F. evanescens with the (1) H NMR data of other lipids allowed them to be identified as diacylglycerols. The structures of betaine lipids isolated from brown algae were confirmed by NMR for the first time. The fatty acid compositions of the isolated lipids were determined by gas chromatography-mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.