The TEX 86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published TEX 86 records, critically reevaluate them in light of new understandings in TEX 86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX 86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, % GDGT RS , which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX 86 H and TEX 86 L (ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX 86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO 2 ) was the likely driver of surface water cooling during the descent toward the icehouse.
The often-used phrase ‘the uplift of the Tibetan Plateau’ implies a flat-surfaced Tibet rose as a coherent entity, and that uplift was driven entirely by the collision and northward movement of India. Here, we argue that these are misconceptions derived in large part from simplistic geodynamic and climate modeling, as well as proxy misinterpretation. The growth of Tibet was a complex process involving mostly Mesozoic collisions of several Gondwanan terranes with Asia, thickening the crust and generating complex relief before the arrival of India. In this review, Earth system modeling, paleoaltimetry proxies and fossil finds contribute to a new synthetic view of the topographic evolution of Tibet. A notable feature overlooked in previous models of plateau formation was the persistence through much of the Cenozoic of a wide east–west orientated deep central valley, and the formation of a plateau occurred only in the late Neogene through compression and internal sedimentation.
Climate sensitivity is a key metric used to assess the magnitude of global warming given increased CO2 concentrations. The geological past can provide insights into climate sensitivity; however, on timescales of millions of years, factors other than CO2 can drive climate, including paleogeographic forcing and solar luminosity. Here, through an ensemble of climate model simulations covering the period 150–35 million years ago, we show that climate sensitivity to CO2 doubling varies between ∼3.5 and 5.5 °C through this time. These variations can be explained as a nonlinear response to solar luminosity, evolving surface albedo due to changes in ocean area, and changes in ocean circulation. The work shows that the modern climate sensitivity is relatively low in the context of the geological record, as a result of relatively weak feedbacks due to a relatively low CO2 baseline, and the presence of ice and relatively small ocean area in the modern continental configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.