Herein we report the first example of nanocrystal (NC) sensitized triplet–triplet annihilation based photon upconversion from the visible to ultraviolet (vis-to-UV).
Surface-enhanced coherent anti-Stokes Raman scattering (SECARS) measurements carried out on individual nanosphere dimer nantennas are presented. The ν-domain and t-domain CARS measurements in the few-molecule limit are contrasted as vibrational autocorrelation and cross-correlation, respectively. We show that in coherent Raman spectroscopies carried out with ultrashort pulses, the effect of surface enhancement is to saturate stimulated steps at very low incident intensities (100 fJ in 100 fs pulses), and the principal consideration in sensitivity is the effective quadratic enhancement of spontaneous emission cross sections, σ* = (E L /E o ) 2 σ. Through multicolor femtosecond SECARS measurements we show that beside enhancement factors, an effective plasmon mode matching consideration controls the interplay between coherent electronic Raman scattering on the nantenna and vibrational Raman scattering on its molecular load. Through extensive measurements on individual nantennas, we establish the tolerable average and peak intensities that can be used in ultrafast measurements at nanojunctions, and we highlight a variety of plasmon-driven chemical and physical channels of signal and sample degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.