Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn n-or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.Keywords mesocopic transport · quantum interferece · graphene-based nanostructures · Aharonov-Bohm effect · disorder effects PACS 73.23.-b · 72.80.Vp · 73.43.Jn · 73.20.Fz
We address the electronic properties of quantum dots in the two-dimensional α − 𝒯3 lattice when subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene (pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass) tight-binding lattice calculation. In a second step we analyse charge transport through a contacted α − 𝒯3 quantum dot in a magnetic field by calculating the local density of states and the conductance within the kernel polynomial and Landauer-Büttiker approaches. Thereby the influence of a disordered environment is discussed as well.
Graphical abstract
We consider a Dice model with Dirac cones intersected by a topologically flat band at the charge neutrality point and analyze the inelastic scattering of massless pseudospin-1 particles on a circular, gate-defined, oscillating barrier. Focusing on the resonant scattering regime at small energy of the incident wave, we calculate the reflection and transmission coefficients and derive explicit expressions for the time-dependent particle probability, current density and scattering efficiency within (Floquet) Dirac-Weyl theory, both in the near-field and the far-field. We discuss the importance of sideband scattering and Fano resonances in the quantum limit. When resonance conditions are fulfilled, the particle is temporarily trapped in vortices located close to edge of the quantum dot before it gets resubmitted with strong angular dependence. Interestingly even periodically alternating forward and backward radiation may occur. We also demonstrate the revival of resonant scattering related to specific fusiform boundary trapping profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.