This paper proposes a fast and scalable method for uncertainty quantification of machine learning models' predictions. First, we show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution. Importantly, the approach allows to disentangle explicitly aleatoric and epistemic uncertainties. The resulting method works directly in the feature space. However, one can apply it to any neural network by considering an embedding of the data induced by the network. We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of realworld image datasets, such as MNIST, SVHN, CIFAR-100 and several versions of ImageNet.
Accounting for the uncertainty in the predictions of modern neural networks is a challenging and important task in many domains. Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure (e.g., Bayesian neural networks) or dramatically increase the computational cost of predictions such as approaches based on ensembling. This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals. The method is based on the classical delta method in statistics but achieves computational efficiency by using matrix sketching to approximate the Jacobian matrix. The resulting algorithm is competitive with state-of-the-art approaches for constructing predictive intervals on various regression datasets from the UCI repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.