frontier-orbital interactions with atom specificity. We anticipate that the method will be broadly applicable in the chemical sciences, and complement approaches that probe structural dynamics in ultrafast processes.In our experimental set-up (Figure 1a), the valence electronic structure of Fe(CO) 5 is probed with femtosecond-resolution resonant inelastic x-ray scattering (RIXS) at the Fe L 3 -edge (Fe experiments. This triplet arises from a singlet state with a time constant of 300 fs, consolidating the notion 6 that sub-ps intersystem crossing appears to be common in the excited-state dynamics of transition-metal complexes 7,[22][23][24] . The persistence of the triplet Fe(CO) 4 ( 3 B 2 ) up to our maximum time delay of 3 ps is consistent with it undergoing a slow, spin-forbidden reaction with intersystem crossing to a solvent-complexed singlet state on the 50-100 ps time scale 4,5, 25 . However, the observed branching on a sub-ps time scale into the competing and simultaneous reaction channels of spin crossover and ligation to form coordinatively saturated species introduces an efficient pathway circumventing this spin barrier. It also supports the idea that the high density of electronic excited states and the relatively large amount of excess energy available in the system determine the course of the excited-state dynamics, rather than spin selection rules alone 5,6 . Fast ligation could be facilitated along the singlet pathway, confirming the general notion that solvent-stabilized metal centers form fast 3, 4, 11 and consistent with the observation of unsaturated carbonyl Cr(CO) 5 forming a solvent complex in alcohol solution within 1.6 ps 26 . An alternative proposal 20 for Fe(CO) 5 involves concerted exchange of CO and EtOH on the time scale of ligand dissociation of 100-150 fs. This would also proceed along a singlet pathway and in agreement with our results, as the temporal resolution of our measurements is not sufficient to distinguish between this concerted and the alternative sequential process. Revealing in detail 8 the influence of solvent-solute interactions will have to be the subject of future studies, which could also explore whether the structure of the solute prior to dissociation 20 influences the excited-state branching ratio between the different pathways.We find that the ligation capability of Fe(CO) 4 is mostly determined by its d σ * LUMO, which receives σ donation from occupied CO or ethanol ligand orbitals. Population of the antibonding d σ * orbital in excited singlet ( 1 B 2 ) and triplet ( 3 B 2 ) Fe(CO) 4 impedes σ donation from ligands (see sketches in Figure 3), explaining the inertness of these species against ligation; this problem is absent in the ligation channel that produces coordinately saturated species. Establishing this correlation of orbital symmetry with spin multiplicity and reactivity 27 is enabled by the atom specificity with which x-ray laser based femtosecondresolution spectroscopy can explore frontier-orbital interactions. This ability gives unique access t...
Irradiating a ferromagnet with a femtosecond laser pulse is known to induce an ultrafast demagnetization within a few hundred femtoseconds. Here we demonstrate that direct laser irradiation is in fact not essential for ultrafast demagnetization, and that electron cascades caused by hot electron currents accomplish it very efficiently. We optically excite a Au/Ni layered structure in which the 30 nm Au capping layer absorbs the incident laser pump pulse and subsequently use the X-ray magnetic circular dichroism technique to probe the femtosecond demagnetization of the adjacent 15 nm Ni layer. A demagnetization effect corresponding to the scenario in which the laser directly excites the Ni film is observed, but with a slight temporal delay. We explain this unexpected observation by means of the demagnetizing effect of a superdiffusive current of non-equilibrium, non-spin-polarized electrons generated in the Au layer.
Dynamical processes are commonly investigated using laser pump-probe experiments, with a pump pulse exciting the system of interest and a second probe pulse tracking its temporal evolution as a function of the delay between the pulses. Because the time resolution attainable in such experiments depends on the temporal definition of the laser pulses, pulse compression to 200 attoseconds (1 as = 10(-18) s) is a promising recent development. These ultrafast pulses have been fully characterized, and used to directly measure light waves and electronic relaxation in free atoms. But attosecond pulses can only be realized in the extreme ultraviolet and X-ray regime; in contrast, the optical laser pulses typically used for experiments on complex systems last several femtoseconds (1 fs = 10(-15) s). Here we monitor the dynamics of ultrafast electron transfer--a process important in photo- and electrochemistry and used in solid-state solar cells, molecular electronics and single-electron devices--on attosecond timescales using core-hole spectroscopy. We push the method, which uses the lifetime of a core electron hole as an internal reference clock for following dynamic processes, into the attosecond regime by focusing on short-lived holes with initial and final states in the same electronic shell. This allows us to show that electron transfer from an adsorbed sulphur atom to a ruthenium surface proceeds in about 320 as.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.