In this paper, we address the problem of finding workload exchange policies for decentralized Computational Grids using an Evolutionary Fuzzy System. To this end, we establish a non-invasive collaboration model on the Grid layer which requires minimal information about the participating High Performance and High Throughput Computing (HPC/HTC) centers and which leaves the local resource managers completely untouched. In this environment of fully autonomous sites, independent users are assumed to submit their jobs to the Grid middleware layer of their local site, which in turn decides on the delegation and execution either on the local system or on remote sites in a situation-dependent, adaptive way. We find for different scenarios that the exchange policies show good performance characteristics not only with respect to traditional metrics such as average weighted response time and utilization, but also in terms of robustness and stability in changing environments.
In our work, we address the problem of workload distribution within a computational grid. In this scenario, users submit jobs to local high performance computing (HPC) systems which are, in turn, interconnected such that the exchange of jobs to other sites becomes possible. Providers are able to avoid local execution of jobs by offering them to other HPC sites. In our implementation, this distribution decision is made by a fuzzy system controller whose parameters can be adjusted to establish different exchange behaviors. In such a system, it is essential that HPC sites can only benefit if the workload is equitably (not necessarily equally) portioned among all participants. However, each site egoistically strives only for the minimization of its own jobs' response times regularly at the expense of other sites. This scenario is particularly suited for the application of a competitive coevolutionary algorithm: the fuzzy systems of the participating HPC sites are modeled as species that evolve in different populations while having to compete within the commonly shared ecosystem. Using real workload traces and grid setups, we show that opportunistic cooperation leads to significant improvements for each HPC site as well as for the overall system.
International audienceScheduling in computational grids addresses the allocation of computing jobs to globally distributed compute resources. In a frequently changing resource environment, scheduling decisions have to be made rapidly. Depending on both the job properties and the current state of the resources, those decisions are different. Thus, the performance of grid scheduling systems highly depends on their adaptivity and flexibility in changing environments. Under these conditions, methods from knowledge discovery yielded significant success to augment and substitute conventional grid scheduling techniques. This paper presents a survey on approaches to extract, represent, and utilize knowledge to improve the grid scheduling performance. It aims to give researchers insight into techniques used for knowledge-supported scheduling in large-scale distributed computing environments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.