The paper describes a long-term scheduling problem for thermal power plants and energy storages. In addition, renewable energy sources are integrated by considering the residual demand. Besides the classical minimization of the production costs, emission-related costs are taken into account. Thereby, emission costs are determined by market prices for CO 2 emission certificates (i.e., using the EU emissions trading system). For the proposed unit commitment problem with hydrothermal coordination for economic and emission control, an enhanced mixed-integer linear programming model is presented. Moreover, a new heuristic approach is developed, which consists of two solution stages. The heuristic first performs an isolated dispatching of thermal plants. Then, a re-optimization stage is included in order to embed activities of energy storages into the final solution schedule. The considered approach is able to find outstanding schedules for benchmark instances with a planning horizon of up to one year. Furthermore, promising results are also obtained for large-scale real-world electricity systems. For the German electricity market, the relationship of CO 2 certificate prices and the optimal thermal dispatch is illustrated by a comprehensive sensitivity analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.