The weak D phenotype is caused by many different RHD alleles encoding aberrant RhD proteins, raising the possibility of distinct serologic phenotypes and of anti-D immunizations in weak D. We reported 6 new RHD alleles, D category III type IV, DIM, and the weak D types 4.1, 4.2.1, 4.2.2, and 17. The immunohematologic features of 18 weak D types were examined by agglutination and flow cytometry with more than 50 monoclonal anti-D. The agglutination patterns of the partial D phenotypes DIM, DIII type IV, and DIVtype III correlated well with the D epitope models, those of the weak D types showed no correlation. In flow cytometry, the weak D types displayed type-specific antigen densities between 70 and 4000 RhD antigens per cell and qualitatively distinct D antigens. A Rhesus D similarity index was devised to characterize the extent of qualitative changes in aberrant D antigens and discriminated normal D from all tested partial D, including D category III. In some rare weak D types, the extent of the alterations was comparable to that found in partial Ds that were prone to anti-D immunization. Four of 6 case reports with anti-D in weak D represented auto-anti-D. We concluded that, in contrast to previous assumptions, most weak D types, including prevalent ones, carry altered D antigens. These observations are suggestive of a clinically relevant potential for anti-D immunizations in some, but not in the prevalent weak D types, and were used to derive an improved transfusion strategy in weak D patients.
Background: Blood group genotyping is increasingly utilized for prenatal diagnosis and after recent transfusions, but still lacks the specificity of serology. In whites, the presence of antigen D is predicted, if two or more properly selected RHD-specific polymorphism are detected. This prediction must fail, if an antigen D negative RHD positive allele is encountered. Excluding RHDψ and Cde S frequent only in individuals of African descent, most of these alleles are unknown and the population frequency of any such allele has not been determined.
The weak D phenotype is caused by many different RHD alleles encoding aberrant RhD proteins, raising the possibility of distinct serologic phenotypes and of anti-D immunizations in weak D. We reported 6 new RHD alleles, D category III type IV, DIM, and the weak D types 4.1, 4.2.1, 4.2.2, and 17. The immunohematologic features of 18 weak D types were examined by agglutination and flow cytometry with more than 50 monoclonal anti-D. The agglutination patterns of the partial D phenotypes DIM, DIII type IV, and DIVtype III correlated well with the D epitope models, those of the weak D types showed no correlation. In flow cytometry, the weak D types displayed type-specific antigen densities between 70 and 4000 RhD antigens per cell and qualitatively distinct D antigens. A Rhesus D similarity index was devised to characterize the extent of qualitative changes in aberrant D antigens and discriminated normal D from all tested partial D, including D category III. In some rare weak D types, the extent of the alterations was comparable to that found in partial Ds that were prone to anti-D immunization. Four of 6 case reports with anti-D in weak D represented auto-anti-D. We concluded that, in contrast to previous assumptions, most weak D types, including prevalent ones, carry altered D antigens. These observations are suggestive of a clinically relevant potential for anti-D immunizations in some, but not in the prevalent weak D types, and were used to derive an improved transfusion strategy in weak D patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.