In natural situations, movements are often directed toward locations different from that of the evoking sensory stimulus. Movement goals must then be inferred from the sensory cue based on rules. When there is uncertainty about the rule that applies for a given cue, planning a movement involves both choosing the relevant rule and computing the movement goal based on that rule. Under these conditions, it is not clear whether primates compute multiple movement goals based on all possible rules before choosing an action, or whether they first choose a rule and then only represent the movement goal associated with that rule. Supporting the former hypothesis, we show that neurons in the frontoparietal reach areas of monkeys simultaneously represent two different rule-based movement goals, which are biased by the monkeys' choice preferences. Apparently, primates choose between multiple behavioral options by weighing against each other the movement goals associated with each option.
We investigated the neural dynamics of sensorimotor transformations in the parietal reach region (PRR) of monkeys. To dissociate sensory from motor goal representations, we used a memory-guided anti-reach task. The monkeys had to reach either to a visually instructed, memorized peripheral target position (pro-reach) or to a diametrically opposed position (anti) while keeping central ocular fixation. Pro-and anti-reaches were randomly interleaved and indicated by a color instruction from the beginning of each trial. We analyzed spatiotemporal single-cell tuning and performed time-resolved population decoding to quantify the dynamic representation of the spatial visual cue, the reach goal, and the currently valid task rule (pro/anti mapping). Sensory information regarding the visual cue position was represented weakly during a short period of cue visibility. PRR predominantly encoded the reach goal from the end of the cue period on. The representation of the reach goal in the memory task evolves later for the anti-compared with pro-reaches, consistent with a 40 -50 ms difference in reaction time between the two task rules. The task rule could be decoded before the appearance of the spatial cue, which indicates that abstract rule information is present in PRR that is independent of spatial cue or motor goal representations. Our findings support the hypothesis that PRR immediately translates current sensory information into reach movement plans, rather than storing the memorized cue location in the instructed-delay task. This finding indicates that PRR represents integrated knowledge on spatial sensory information combined with abstract behavioral rules to encode the desired movement goal.
When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves). Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles.
Cortical synchronization at gamma-frequencies (35-90 Hz) has been proposed to define the connectedness among the local parts of a perceived visual object. This hypothesis is still under debate. We tested it under conditions of binocular rivalry (BR), where a monkey perceived alternations among conflicting gratings presented singly to each eye at orthogonal orientations. We made multi-channel microelectrode recordings of multi-unit activity (MUA) and local field potentials (LFP) from striate cortex (V1) during BR while the monkey indicated his perception by pushing a lever. We analyzed spectral power and coherence of MUA and LFP over 4-90 Hz. As in previous work, coherence of gamma-signals in most pairs of recording locations strongly depended on grating orientation when stimuli were presented congruently in both eyes. With incongruent (rivalrous) stimulation LFP power was often consistently modulated in consonance with the perceptual state. This was not visible in MUA. These perception-related modulations of LFP occurred at low and medium frequencies (< 30 Hz), but not at gamma-frequencies. Perception-related modulations of LFP coherence were also restricted to the low-medium range. In conclusion, our results do not support the expectation that gamma-synchronization in V1 is related to the perceptual state during BR, but instead suggest a perception-related role of synchrony at low and medium frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.