Nitrogen usually consists of molecules where two atoms are strongly triple-bonded. Here, we report on an allotropic form of nitrogen where all atoms are connected with single covalent bonds, similar to carbon atoms in diamond. The compound was synthesized directly from molecular nitrogen at temperatures above 2,000 K and pressures above 110 GPa using a laser-heated diamond cell. From X-ray and Raman scattering we have identified this as the long-sought-after polymeric nitrogen with the theoretically predicted cubic gauche structure (cg-N). This cubic phase has not been observed previously in any element. The phase is a stiff substance with bulk modulus >or=300 GPa, characteristic of strong covalent solids. The polymeric nitrogen is metastable, and contrasts with previously reported amorphous non-molecular nitrogen, which is most likely a mixture of small clusters of non-molecular phases. The cg-N represents a new class of single-bonded nitrogen materials with unique properties such as energy capacity: more than five times that of the most powerfully energetic materials.
Pressure‐stabilized hydrides are a new rapidly growing class of high‐temperature superconductors, which is believed to be described within the conventional phonon‐mediated mechanism of coupling. Here, the synthesis of one of the best‐known high‐TC superconductors—yttrium hexahydride Im3¯m‐YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2(0) of YH6 is surprisingly high: 116–158 T, which is 2–2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon‐assisted superconductivity. Current–voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm−2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal–Eliashberg and Bardeen–Cooper–Schrieffer theories, and presence of an additional mechanism of superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.