This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry-field condition and field capacity, were applied to an incubation that lasted 111 days. Short-term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above-defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO 2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)-rich deciduous savanna than at the N-limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress-induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework.
Soil carbon is a major component in the global carbon cycle. Understanding the relationship between environmental changes and rates of soil respiration is critical for projecting changes in soil carbon fluxes in a changing climate. Although significant attention has been focused on the temperature sensitivity of soil organic matter decomposition, the factors that affect this temperature sensitivity are still debated. In this study, we examined the effects of substrate availability on the temperature sensitivity of soil respiration in several different kinds of soils. We found that increased substrate availability had a significant positive effect on temperature sensitivity, as measured by soil Q 10 values, and that this effect was inversely proportional to original substrate availability. This observation can be explained if decomposition follows MichaelisMenten kinetics. The simple Q 10 model was most appropriate in soils with high substrate availability.
Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.