In recent years, the versatile phototrophic protist
Euglena gracilis
has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the β-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from
E. gracilis
can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of
E. gracilis
have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making
E. gracilis
a noteworthy challenger for microalgae such as
Chlorella
spp. and their products currently on the market.
Silver nanoparticles have applications in plasmonics, medicine, catalysis and electronics. We report a simple, cost-effective, facile and reproducible technique to synthesise silver nanoparticles via plasma-induced non-equilibrium liquid chemistry with the absence of a chemical reducing agent. Silver nanoparticles with tuneable sizes from 5.4 to 17.8 nm are synthesised and characterised using Transmission Electron Microscopy (TEM) and other analytic techniques. A mechanism for silver nanoparticle formation is also proposed. The antibacterial activity of the silver nanoparticles was investigated with gram-positive and gram-negative bacteria. The inhibition of both bacteria types was observed. This is a promising alternative method for the instant synthesis of silver nanoparticles, instead of the conventional chemical reduction route, for numerous applications.
Polycyclic aromatic hydrocarbons (PAH) are widespread environmental pollutants of considerable risk to human health. The aerobic degradation of PAH via oxygenase reactions has been studied for several decades. In contrast, it was not until very recent that the first key enzyme involved in anaerobic PAH degradation, the dearomatizing 2-naphthoyl-CoA reductase, was isolated and characterized. In this work, a PCR-based functional assay was developed to detect microorganisms that have the ability to anaerobically degrade naphthalene, as a model for larger PAH. The degenerative oligonucleotide probes introduced here amplified a highly conserved region of the gene encoding 2-naphthoyl-CoA reductase (Ncr) in numerous sulfate-reducing pure cultures and environmental enrichments. The assay provides the first molecular tool for monitoring the anaerobic degradation of a model PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.