This study presents the cyclic deformation behaviour of three high‐alloyed austenitic cast steels which are characterized by different chemical compositions leading to different austenite stabilities and stacking fault energies. Thus, depending on the chemical composition different deformation mechanisms arise which have a significant influence on the cyclic deformation behaviour and life time relations.
The materials were characterized under total‐strain control. The fatigue life relations of Basquin and Manson‐Coffin are applied successfully for all steel variants. The cyclic stress‐strain response is described using the Ramberg‐Osgood relationship. It is shown that the parameters n' and K' depend strongly on the accumulated plastic strain λp. The mechanical properties are discussed together with microstructural investigations of deformation structures and martensitic transformations as well as twinning, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.