The data obtained demonstrate that array-CGH can detect chromosome imbalances in embryos, also providing the added benefit of simultaneous aneuploidy screening of all 24 chromosomes. Array-CGH has the potential to overcome several inherent limitations of FISH-based tests, providing improvements in terms of test performance, automation, sensitivity and reliability.
Comprehensive chromosome screening and follow-up assessment of large numbers of cells provided a unique insight into the cytogenetics of human blastocysts. Meiotic and post-zygotic errors leading to mosaicism were common. However, most mosaic blastocysts contained no normal cells. Hence, CGH or aCGH TE analysis is an accurate aneuploidy detection tool and may assist in identifying viable euploid embryos with higher implantation potential.
Objective To assess the feasibility of offering array-based comparative genomic hybridization testing for prenatal diagnosis as a first-line test, a prospective study was performed, comparing the results achieved from array comparative genomic hybridization (aCGH) with those obtained from conventional karyotype.Method Women undergoing amniocentesis or chorionic villus sampling were offered aCGH analysis. A total of 1037 prenatal samples were processed in parallel using both aCGH and G-banding for standard karyotyping. Specimen types included amniotic fluid (89.0%), chorionic villus sampling (9.5%) and cultured amniocytes (1.5%).Results Chromosomal abnormalities were identified in 34 (3.3%) samples; in 9 out of 34 cases (26.5%) aCGH detected pathogenic copy number variations that would not have been found if only a standard karyotype had been performed. aCGH was also able to detect chromosomal mosaicism at as low as a 10% level. There was complete concordance between the conventional karyotyping and aCGH results, except for 2 cases that were only correctly diagnosed by aCGH.Conclusions This study demonstrates that aCGH represents an improved diagnostic tool for prenatal detection of chromosomal abnormalities. Although larger studies are needed, our results provide further evidence on the feasibility of introducing aCGH as a first-line diagnostic test in routine prenatal diagnosis practice.
In this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors.
Rhabdomyosarcomas are characterized by loss of heterozygosity (LOH) at chromosome region 11p15.5, a region known to contain several imprinted genes including insulin-like growth factor 2 (IGF2), H19, and p57(KIP2). We analyzed 48 primary tumour samples and found distinct genetic changes at 11p15.5 in alveolar and embryonal histological subtypes. LOH was a feature of embryonal tumours, but at a lower frequency than previous studies. Loss of imprinting (LOI) of the IGF2 gene was detected in 6 of 13 informative cases, all harbouring PAX3-FKHR or PAX7-FKHR fusion genes characteristic of alveolar histology. In contrast, H19 imprinting was maintained in 14 of 15 informative cases and the case with H19 LOI had maintenance of the IGF2 imprint indicating separate mechanisms controlling imprinting of IGF2 and H19. The adult promoter of IGF2, P1, was used in 5 of 14 tumours and its expression was unrelated to IGF2 imprinting status implying a further mechanism of altered IGF2 regulation. The putative tumour suppressor gene p57(KIP2) was expressed in 15 of 29 tumours and expression was unrelated to allele status. Moreover, in tumours with p57(KIP2) expression, there was no evidence for inactivating mutations, suggesting that p57(KIP2) is not a tumour suppressor in rhabdomyosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.