Asymmetric Incremental Sheet Forming (AISF) is a relatively new manufacturing process. In AISF, a CNC driven forming tool imposes a localized plastic deformation as it moves along the contour of the desired part. Thus, the final shape is obtained by a sequence of localized plastic deformations. AISF is suitable for small series production of sheet metal parts as needed in aeronautical and medical applications. Two main process limits restrict the range of application of AISF in these fields. These are the low geometrical accuracy of parts made from titanium alloys or high strength steels and, for titanium alloys, the limited formability at room temperature. In this paper a new concept for laser-assisted AISF is introduced including the required components. Furthermore, the CAX tools used for programming the NC path for the forming tool and the laser spot are illustrated. First experimental results show that the formability of the alloy Ti Grade 5 (TiAl6V4), which is usu ally used in aeronautic applications, can be increased
Aeronautical applications often require small batches of large-scale sheet metal parts made from titanium and its alloys. Due to the low formability of titanium at room temperature, warm forming processes are necessary. Incremental sheet metal forming (ISF) is suitable for production of prototypes and small batches as well as large-scale parts. A short review of the experimental work done by international scientists in the field of warm ISF including stationary and moved temperature sensors will be presented mostly applied from the backside of the sheet metal. The present paper shows a new approach for a tool setup including a thermocouple inside of the tool. Hence, the sensor for temperature measurement was moved with the forming zone. Furthermore, a suitable closed loop control including a PID controller will be presented. The characteristics of the controller will be discussed. By means of two different warm ISF processes (ISF with resistance heating and laser-assist ed ISF), the applicability of the developed setup will be analysed and evaluated. It will be shown that the experimental setup is capable to ensure minimal temperatures needed to ensure adequate formability of Ti grade 5
Asymmetric Incremental Sheet Forming (AISF) has been developed as a flexible process for low-volume production of sheet metal parts. In AISF, a part is obtained as the sum of localized plastic deformations produced by a simple forming tool that moves under CNC control. In spite of about 20 years of research and development, AISF has not had much industrial take-up yet. The main reason for this is that attempts to improve, among other limitations, the accuracy, speed and range of feasible geometries of the process by adapted process strategies has not brought about general solutions. This paper presents an overview of the current state of development of hybrid asymmetric incremental sheet forming processes at RWTH Aachen University. The goal of the development of hybrid ISF processes is to allow for a quantum leap of the capabilities of AISF in order to enable a broader industrial use of AISF. Two hybrid process variations of AISF are presented: stretch forming combined with ISF and laser-assisted AISF. It is shown that the combination of stretch forming and AISF can improve the time per part, sheet thickness distribution and accuracy of the final part. Laser-assisted AISF is shown to enable the flexible forming of non cold-workable materials such as magnesium and titanium alloys when the forming conditions are adapted to the temperature and strain rate dependent formability of the sheet metal. In addition, first results of the forming of hybrid aluminum-steel sheet metal are shown
ncremental sheet metal forming (ISF) is a suitable process for the production of small batch sizes. Due to the minor tooling effort and low forming forces, ISF enables the production of large components with inexpensive and light machine set-ups. Hence, ISF is an interesting manufacturing technique for aeronautical applications. Sheet metal parts in aircrafts are often made of titanium and its alloys like the high strength alloy Ti Grade5 (Ti6Al4V). The characteristic low formability of Ti6Al4V at room temperature requires forming operations on this material to be carried out at the elevated temperatures. The interaction of heating and deformation cycles results in a microstructure evolution, which is believed to have a high impact on formability and product quality. In the present work, the temperature-dependent microstructural evolution of the as-deformed parts was investigated. Longitudinal pockets with different depths were formed using a laser-assisted ISF process. The microstructural evolution and hardening of the material were analyzed with respect to the local strain in different forming depths and pocket zones. The formability of the material together with the deformation depth and the sheet thickness-reduction were found to be strongly dependent on the applied process temperatures and the activated deformation mechanisms like dislocation glide and dynamic recrystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.