Heavily-doped semiconductor films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate heavily n-type doped germanium epilayers grown on different substrates, in-situ doped in the 10 17 to 10 19 cm −3 range, by infrared spectroscopy, first principle calculations, pump-probe spectroscopy and dc transport measurements to determine the relation between plasma edge and carrier density and to quantify mid-infrared plasmon losses. We demonstrate that the unscreened plasma frequency can be tuned in the 400 -4800 cm −1 range and that the average electron scattering rate, dominated by scattering with optical phonons and charged impurities, increases almost linearly with frequency. We also found weak dependence of losses and tunability on the crystal defect density, on the inactivated dopant density and on the temperature down to 10 K. In films where the plasma was optically activated by pumping in the near-infrared, we found weak but significant dependence of relaxation times on the static doping level of the film. Our results suggest that plasmon decay times in the several-picosecond range can be obtained in ntype germanium thin films grown on silicon substrates hence allowing for underdamped mid-infrared plasma oscillations at room temperature.The recent push towards applications of spectroscopy for chemical and biological sensing in the mid-infrared (mid-IR)1-8 has prompted the need for conducting thin films displaying values of the complex dielectric functionǫ(ω) = ǫ ′ (ω) + iǫ ′′ (ω) that can be tailored to meet the needs of novel electromagnetic designs exploiting the concepts of metamaterials, transformation optics and plasmonics 9 . In the design of metamaterials, where subwavelength sized conducting elements are embedded in dielectric matrices, if the values of ǫ ′ of the metal and the dielectric are of the same order, but have opposite sign, the geometric filling fractions of the metal and dielectric can be readily tuned to achieve subwavelengthresolution focusing of radiation 10 . Such requirement is met by silver for wavelengths λ around 400 nm. The same condition cannot be achieved in the IR range by using elemental metals, however, because metals possess an extremely high negative value of ǫ ′ not equaled, in
We directly trace the near-and mid-infrared transmission change of a VO 2 thin film during an ultrafast insulator-to-metal transition triggered by high-field multi-terahertz transients. Non-thermal switching into a metastable metallic state is governed solely by the amplitude of the applied terahertz field. In contrast to resonant excitation below the threshold fluence, no signatures of excitonic self-trapping are observed. Our findings are consistent with the generation of spatially separated charge pairs and a cooperative transition into a delocalized metallic state by THz field-induced tunneling. The tunneling process is a condensed-matter analogue of the Schwinger effect in nonlinear quantum electrodynamics. We find good agreement with the pair production formula by replacing the Compton wavelength with an electronic correlation length of 2.1 Å.
Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at timescales shorter than 100fs. Here, we investigate the evolution of non-equilibrium charges towards an isotropic distribution by means of fluence-dependent ultrafast spectroscopy and develop an analytical model able to quantify the isotropization process. In contrast to conventional semiconductors, the isotropization is governed by optical phonon emission, rather than electron-electron scattering, which nevertheless contributes in shaping the anisotropic photocarrier occupation within the first few fs.
Femtosecond systems based on ytterbium as active medium are ideal for driving ultrafast optical parametric ampliଏers in a broad frequency range. The excellent stability of the source and the repetition rate tunable to up to hundreds of kHz allow for the implementation of an advanced two-color pump probe setup with the capability to achieve excellent signal-to-noise performances with sub-10 fs temporal resolution.
We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic transitions is observed when the number of layers is smaller than a critical value of 8.Through ab-initio modelling we are able to link this behavior to a fundamental change in the band structure that leads to the formation of a valence band shaped as an inverted Mexican hat in 2 thin GaSe. The thickness-controlled modulation of the optical properties provides attractive resources for the development of functional optoelectronic devices based on a single material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.