The article is dedicated to the development of a mathematical model and methodology for evaluating the effectiveness of integrating information technology solutions into digital platforms using virtual simulation infrastructures. The task of selecting a stack of technologies is formulated as the task of selecting elements from sets of possible solutions. This allows us to develop a mathematically unified approach to evaluating the effectiveness of different solutions, such as choosing programming languages, choosing Database Management System (DBMS), choosing operating systems and data technologies, and choosing the frameworks used. Introduced technology compatibility operation and decomposition of the evaluation of the efficiency of the technology stack at the stages of the life cycle of the digital platform development allowed us to reduce the computational complexity of the formation of the technology stack. A methodology based on performance assessments for experimental research in a virtual software-configurable simulation environment has been proposed. The developed solution allows the evaluation of the performance of the digital platform before its final implementation, while reducing the cost of conducting an experiment to assess the characteristics of the digital platform. It is proposed to compare the characteristics of digital platform efficiency based on the use of fuzzy logic, providing the software developer with an intuitive tool to support decision-making on the inclusion of the solution in the technology stack.
The article centers round the problem of design a feedback control for the control moment gyroscope (CMG)-actuated inverted pendulum with online equilibrium revision after the center of mass displacement. The methodology for the control synthesis is the Linear Quadratic Regulator. The equations of motion for the model of the inverted pendulum are derived. The control is synthetized and implemented both in an experimental plant and in a simulation model. The results of the experiment and simulation show the reliability of the synthetized control, which is proved to be able to deal with the center of mass displacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.