Abstract. We investigate different notions of linear independence and of matrix rank that are relevant for max-plus or tropical semirings. The factor rank and tropical rank have already received attention, we compare them with the ranks defined in terms of signed tropical determinants or arising from a notion of linear independence introduced by Gondran and Minoux. To do this, we revisit the symmetrization of the max-plus algebra, establishing properties of linear spaces, linear systems, and matrices over the symmetrized max-plus algebra. In parallel we develop some general technique to prove combinatorial and polynomial identities for matrices over semirings that we illustrate by a number of examples.
We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.
We dedicate this paper to the memory of our friend and colleague Grigory L. Litvinov.Abstract. We prove general Cramer type theorems for linear systems over various extensions of the tropical semiring, in which tropical numbers are enriched with an information of multiplicity, sign, or argument. We obtain existence or uniqueness results, which extend or refine earlier results of Gondran and Minoux (1978), Plus (1990), Gaubert (1992), Richter-Gebert, Sturmfels and Theobald (2005) and Izhakian and Rowen (2009). Computational issues are also discussed; in particular, some of our proofs lead to Jacobi and GaussSeidel type algorithms to solve linear systems in suitably extended tropical semirings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.