We prove convergence with optimal algebraic rates for an adaptive finite element method for nonlinear equations with strongly monotone operator. Unlike prior works, our analysis also includes the iterative and inexact solution of the arising nonlinear systems by means of the Picard iteration. Using nested iteration, we prove, in particular, that the number of of Picard iterations is uniformly bounded in generic cases, and the overall computational cost is (almost) optimal. Numerical experiments confirm the theoretical results.Date: November 20, 2018. 1991 Mathematics Subject Classification. 65N30, 65N12, 65N50, 65M22, 65J15. Key words and phrases. quasilinear elliptic PDE, finite element method, adaptive mesh-refinement, adaptive solution of nonlinear algebraic system, optimal convergence rates, Banach fixed point theorem.
We prove that for compactly perturbed elliptic problems, where the corresponding bilinear form satisfies a Gårding inequality, adaptive mesh-refinement is capable of overcoming the preasymptotic behavior and eventually leads to convergence with optimal algebraic rates. As an important consequence of our analysis, one does not have to deal with the a priori assumption that the underlying meshes are sufficiently fine. Hence, the overall conclusion of our results is that adaptivity has stabilizing effects and can overcome possibly pessimistic restrictions on the meshes. In particular, our analysis covers adaptive mesh-refinement for the finite element discretization of the Helmholtz equation from where our interest originated.
We derive and discuss a posteriori error estimators for Galerkin and collocation IGA boundary element methods for weakly-singular integral equations of the first-kind in 2D. While recent own work considered the Faermann residual error estimator for Galerkin IGA boundary element methods, the present work focuses more on collocation and weightedresidual error estimators, which provide reliable upper bounds for the energy error. Our analysis allows piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. We formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments show that the proposed adaptive strategy leads to optimal convergence, and related IGA boundary element methods are superior to standard boundary element methods with piecewise polynomials.
In a recent work (Feischl et al. in Eng Anal Bound Elem 62:141–153, 2016), we analyzed a weighted-residual error estimator for isogeometric boundary element methods in 2D and proposed an adaptive algorithm which steers the local mesh-refinement of the underlying partition as well as the multiplicity of the knots. In the present work, we give a mathematical proof that this algorithm leads to convergence even with optimal algebraic rates. Technical contributions include a novel mesh-size function which also monitors the knot multiplicity as well as inverse estimates for NURBS in fractional-order Sobolev norms.
We consider adaptive finite element methods for second-order elliptic PDEs, where the arising discrete systems are not solved exactly. For contractive iterative solvers, we formulate an adaptive algorithm which monitors and steers the adaptive mesh-refinement as well as the inexact solution of the arising discrete systems. We prove that the proposed strategy leads to linear convergence with optimal algebraic rates. Unlike prior works, however, we focus on convergence rates with respect to the overall computational costs. In explicit terms, the proposed adaptive strategy thus guarantees quasi-optimal computational time. In particular, our analysis covers linear problems, where the linear systems are solved by an optimally preconditioned CG method as well as nonlinear problems with strongly monotone nonlinearity which are linearized by the so-called Zarantonello iteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.