We study Voronoi cells in the statistical setting by considering preimages of the maximum likelihood estimator that tessellate an open probability simplex. In general, logarithmic Voronoi cells are convex sets. However, for certain algebraic models, namely finite models, models with ML degree 1, linear models, and log-linear (or toric) models, we show that logarithmic Voronoi cells are polytopes. As a corollary, the algebraic moment map has polytopes for both its fibers and its image, when restricted to the simplex. We also compute nonpolytopal logarithmic Voronoi cells using numerical algebraic geometry. Finally, we determine logarithmic Voronoi polytopes for the finite model consisting of all empirical distributions of a fixed sample size. These polytopes are dual to the logarithmic root polytopes of Lie type A, and we characterize their faces.
<p style='text-indent:20px;'>We showcase applications of nonlinear algebra in the sciences and engineering. Our review is organized into eight themes: polynomial optimization, partial differential equations, algebraic statistics, integrable systems, configuration spaces of frameworks, biochemical reaction networks, algebraic vision, and tensor decompositions. Conversely, developments on these topics inspire new questions and algorithms for algebraic geometry.</p>
We showcase applications of nonlinear algebra in the sciences and engineering. Our survey is organized into eight themes: polynomial optimization, partial differential equations, algebraic statistics, integrable systems, configuration spaces of frameworks, biochemical reaction networks, algebraic vision, and tensor decompositions. Conversely, developments on these topics inspire new questions and algorithms for algebraic geometry.
We discuss elastic tensegrity frameworks made from rigid bars and elastic cables, depending on many parameters. For any fixed parameter values, the stable equilibrium position of the framework is determined by minimizing an energy function subject to algebraic constraints. As parameters smoothly change, it can happen that a stable equilibrium disappears. This loss of equilibrium is called catastrophe since the framework will experience large-scale shape changes despite small changes of parameters. Using nonlinear algebra we characterize a semialgebraic subset of the parameter space, the catastrophe set, which detects the merging of local extrema from this parametrized family of constrained optimization problems, and hence detects possible catastrophe. Tools from numerical nonlinear algebra allow reliable and efficient computation of all stable equilibrium positions as well as the catastrophe set itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.