To perform a suitable optimization method in terms of emission and efficiency for an internal combustion engine, first highly accurate and possible real-time capable modeling for the transient operations should be provided. In this work, the modeling of NO x and HC raw emission (before exhaust aftertreatment systems) in a six-cylinder gasoline engine under highly transient operation was performed using machine learning approaches. Three different machine learning methods, namely Artificial Neural Network, Long Short-Term Memory, and Random Forest were used and the results of these models were compared with each other. In general, the results show a significant improvement in accuracy compared to other studies that have modeled transient operations. Furthermore, the shortcoming of Artificial Neural Network for the prediction of the HC emission by the transient operation is observed. The coefficient of determination ( R2) for the best model for NO x prediction is 0.98 and 0.97 for the training data and test data, respectively. This value is 0.9 and 0.89 for the best HC prediction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.