The "Oncosimulator" is at the same time a concept of multilevel integrative cancer and (treatment affected) normal tissue biology, an algorithmic construct and a software tool which aims at supporting the clinician in the process of optimizing cancer treatment on the patient individualized basis. Additionally it is a platform for better understanding and exploring the natural phenomenon of cancer as well as training doctors and interested patients alike. In order to achieve all of these goals it has to undergo a thorough clinical optimization and validation process. This is one of the goals of the European Commission funded integrated project "ACGT: Advancing Clinicogenomic Trials on Cancer". Nephroblastoma (Wilms' tumor) and breast cancer have been selected to serve as two paradigms to clinically specify and evaluate the "Oncosimulator" as well as the emerging domain of in silico oncology.
The present paper outlines the initial version of the ACGT (Advancing Clinico-Genomic Trials) -- an Integrated Project, partly funded by the EC (FP6-2005-IST-026996)I-Oncosimulator as an integrated software system simulating in vivo tumour response to therapeutic modalities within the clinical trials environment aiming to support clinical decision making in individual patients. Cancer treatment optimization is the main goal of the system. The document refers to the technology of the system and the clinical requirements and the types of medical data needed for exploitation in the case of nephroblastoma. The outcome of an initial step towards the clinical adaptation and validation of the system is presented and discussed. Use of anonymized real data before and after chemotherapeutic treatment for the case of the SIOP 2001/GPOH nephroblastoma clinical trial constitutes the basis of the clinical adaptation and validation process. By using real medical data concerning nephroblastoma for a single patient in conjunction with plausible values for the model parameters (based on available literature) a reasonable prediction of the actual tumour volume shrinkage has been made possible. Obviously as more and more sets of medical data are exploited the reliability of the model "tuning" is expected to increase. The successful performance of the initial combined ACGT Oncosimulator platform, although usable up to now only as a test of principle, has been a particularly encouraging step towards the clinical translation of the system, being the first of its kind worldwide.
In the early years of co-decision, scholars posited that informal trilogues would empower individual negotiators vis-à-vis their respective institutions because of their privileged position in the process of EU legislative decision-making. Now that the procedural framework governing trilogues has been tightened significantly in recent years particularly with the aim of controlling the negotiators, this article investigates if individual negotiators can still exercise control over the process of decision-making, biasing end results towards their own preferences. Based on a case study of the EU's fourth Railway Package, we conclude that this is indeed the case. Applying a new conceptual frame for analysing informal negotiations, we present first conclusion as to how chief negotiators can manipulate negotiations processes to achieve preferred results in this specific but influential forum of negotiations.
Data management in post-genomic clinical trials is the process of collecting and validating clinical and genomic data with the goal to answer research questions and to preserve it for future scientific investigation. Comprehensive metadata describing the semantics of the data are needed to leverage it for further research like cross-trial analysis. Current clinical trial management systems mostly lack sufficient metadata and are not semantically interoperable. This paper outlines our approach to develop an application that allows trial chairmen to design their trial and especially the required data management system with comprehensive metadata according to their needs, integrating a clinical trial ontology into the design process. To demonstrate the built-in interoperability of data management systems developed in this way, we integrate these applications into a European biomedical Grid for cancer research in a way that the research data collected in the data management systems can be seamlessly analyzed and mined by researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.