The article discusses the issues of improving the collection of traffic information using video cameras and the statistical processing of collected data. The aim of the article was to identify the main patterns of traffic at intersections in traffic congestion and to develop an analysis technique to improve traffic management at intersections. In modern conditions, there is a sharp increase in the number of vehicles, which leads to negative consequences, such as an increase in travel time, additional fuel consumption, increased risk of traffic accidents and others. To solve the problem of improving traffic control at intersections, it is necessary to have a reliable information collection system and apply modern effective methods of processing the collected information. The purpose of this article is to determine the most important traffic characteristics that affect the throughput of intersections. As a criterion for the cross-pass ability of the intersection, the actual number of passing cars during the permission signal of the torch light is taken. Using multivariate regression analysis, a model was developed to predict intersection throughput taking into account the most important traffic characteristics. Analysis of the throughput of intersections using the fuzzy logic method confirmed the correctness of the developed model. In addition, based on the results of processing information collected at 20 intersections and including 597 observations, a methodology was developed for determining the similarity of traffic intersections. This allows us to identify homogeneous types of intersections and to develop typical traffic management techniques in the city, instead of individually managing each node of the city’s transport network individually. The results obtained lead to a significant reduction in costs for the organization of rational traffic flows.
This paper presents the application of simulation to assess and predict the influence of random factors of pedestrian flow and its continuity on the traffic capacity of a signal-controlled intersection during a right turn. The data were collected from the surveillance cameras of 25 signal-controlled intersections in the city of Chelyabinsk, Russia, and interpreted by a neural network. We considered the influence of both the intensity of the pedestrian flow and its continuity on the traffic capacity of a signal-controlled intersection in the stochastic approach, provided that the flow of vehicles is redundant. We used a reasonably minimized regression model as the basis for our intersection models. At the first stage, we obtained and tested a simulated continuous-stochastic intersection model that accounts for the dynamics of traffic flow. The second approach, due to the unpredictability of pedestrian flow, used a relevant method for analysing traffic flows based on the fuzzy logic theory. The second was also used as the foundation to build and graphically demonstrate a computer model in the fuzzy TECH suite for predictive visualization of the values of a traffic flow crossing a signal-controlled intersection. The results of this study can contribute to understanding the real conditions at a signal-controlled intersection and making grounded decisions on its focused control.
The paper considers an approach to building various mathematical models for homogeneous groups of intersections manifested through the use of clustering methods. This is because of a significant spread in their traffic capacity, as well as the influence of several random factors. The initial data on the traffic flow of many intersections was obtained from real-time recorders of the convolutional neural network. As a result of the analysis, we revealed statistically significant differences between the groups of intersections and compiled their linear regression models as a basis for the subsequent formation of generic management decisions. To demonstrate visually the influence of random factors on the traffic capacity of intersections, we built distribution fields based on the fuzzy logic methods for one of the clusters consisting of 14 homogeneous intersections. Modeling was based on the Gaussian type of membership functions as it most fully reflects the random nature of the pedestrian flow and its discontinuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.