Early-onset torsion dystonia is the most severe heritable form of dystonia, a human movement disorder that typically starts during a developmental window in early adolescence. Deletion in the DYT1 gene, encoding the torsinA protein, is responsible for this dominantly inherited disorder, which is non-degenerative and exhibits reduced penetrance among carriers. Here, we explore the hypothesis that deficits in torsinA function result in an increased vulnerability to stress associated with protein folding and processing in the endoplasmic reticulum (ER), where torsinA is located. Using an in vivo quantitative readout for the ER stress response, we evaluated the consequences of torsinA mutations in transgenic nematodes expressing variants of human torsinA. This analysis revealed that, normally, torsinA serves a protective function to maintain a homeostatic threshold against ER stress. Furthermore, we show that the buffering capacity of torsinA is greatly diminished by the DYT1-associated deletion or mutations that prevent its translocation to the ER, block ATPase activity, or increase the levels of torsinA in the nuclear envelope versus ER. Combinations of transgenic Caenorhabditis elegans designed to mimic clinically relevant genetic modifiers of disease susceptibility also exhibit a direct functional correlation to changes in the ER stress response. Furthermore, using mouse embryonic fibroblasts (MEFs) from torsinA knockout mice, we demonstrated that loss of endogenous torsinA results in enhanced sensitivity to ER stress. This study extends our understanding of molecular mechanisms underlying dystonia, and establishes a new functional paradigm to evaluate therapeutic strategies to compensate for reduced torsinA activity in the ER as a means to restore homeostatic balance and neuronal function.
TorsinA is a member of the AAA+ ATPase family of proteins and, notably, is the only known ATPase localized to the ER lumen. It has been suggested to act as a molecular chaperone, while a mutant form associated with early-onset torsion dystonia, a dominantly inherited movement disorder, appears to result in a net loss of function in vivo. Thus far, no studies have examined the chaperone activity of torsinA in vitro. Here we expressed and purified both wild-type (WT) and mutant torsinA fusion proteins in bacteria and examined their ability to function as molecular chaperones by monitoring suppression of luciferase and citrate synthase (CS) aggregation. We also assessed their ability to hold proteins in an intermediate state for refolding. As measured by light scattering and SDS-PAGE, both WT and mutant torsinA effectively, and similarly, suppressed protein aggregation compared to controls. This function was not further enhanced by the presence of ATP. Further, we found that while neither form of torsinA could protect CS from heat-induced inactivation, they were both able to reactivate luciferase when ATP and rabbit reticulocyte lysate were added. This suggests that torsinA holds luciferase in an intermediate state, which can then be refolded in the presence of other chaperones. These data provide conclusive evidence that torsinA acts as a molecular chaperone in vitro and suggests that early-onset torsion dystonia is likely not a consequence of a loss in torsinA chaperone activity but might be an outcome of insufficient torsinA localization at the ER to manage protein folding or trafficking.
SUMMARYMovement disorders represent a significant societal burden for which therapeutic options are limited and focused on treating disease symptomality. Early-onset torsion dystonia (EOTD) is one such disorder characterized by sustained and involuntary muscle contractions that frequently cause repetitive movements or abnormal postures. Transmitted in an autosomal dominant manner with reduced penetrance, EOTD is caused in most cases by the deletion of a glutamic acid (DE) in the DYT1 (also known as TOR1A) gene product, torsinA. Although some patients respond well to anticholingerics, therapy is primarily limited to either neurosurgery or chemodenervation. As mutant torsinA (DE) expression results in decreased torsinA function, therapeutic strategies directed toward enhancement of wild-type (WT) torsinA activity in patients who are heterozygous for mutant DYT1 may restore normal cellular functionality. Here, we report results from the first-ever screen for candidate small molecule therapeutics for EOTD, using multiple activity-based readouts for torsinA function in Caenorhabditis elegans, subsequent validation in human DYT1 patient fibroblasts, and behavioral rescue in a mouse model of DYT1 dystonia. We exploited the nematode to rapidly discern chemical effectors of torsinA and identified two classes of antibiotics, quinolones and aminopenicillins, which enhance WT torsinA activity in two separate in vivo assays. Representative molecules were assayed in EOTD patient fibroblasts for improvements in torsinA-dependent secretory function, which was improved significantly by ampicillin. Furthermore, a behavioral defect associated with an EOTD mouse knock-in model was also rescued following administration of ampicillin. These combined data indicate that specific small molecules that enhance torsinA activity represent a promising new approach toward therapeutic development for EOTD, and potentially for other diseases involving the processing of mutant proteins.
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member the nud gene family, involved in maintenance of nuclear migration. This family also includes nudF whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates, NudC, NudC-like (NudCL) and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity, but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein, and discuss the results in the context of structures recently deposited by Structural Genomics centers, i.e. NudCL and mouse NudCL2. All proteins share the same core CS-domain characteristic for proteins acting either as co-chaperones of Hsp90, or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled-coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins are able to form binary complexes with Lis1. The availability of structural information will be of help in further studies of cellular functions of the NudC family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.