A macroscopic collective motion of a Bose–Einstein condensate (BEC) is commonly associated with phenomena such as superconductivity and superfluidity, often generalised by the term supercurrent. Another type of motion of a quantum condensate is second sound—a wave of condensate’s parameters. Recently, we reported on the decay of a BEC of magnons caused by a supercurrent outflow of the BEC from the locally heated area of a room temperature magnetic film. Here, we present the observation of a macroscopic BEC transport mechanism related to the excitation of second sound. The condensed magnons, being propelled out of the heated area, form compact humps of BEC density, which propagate many hundreds of micrometers in the form of distinct second sound—Bogoliubov waves. This discovery advances the physics of quasiparticles and allows for the application of related transport phenomena for low-loss data transfer in magnon spintronics devices.
We report the experimental realization of a space-time crystal with tunable periodicity in time and space in the magnon Bose-Einstein Condensate (BEC), formed in a room-temperature Yttrium Iron Garnet (YIG) film by radio-frequency space-homogeneous magnetic field. The magnon BEC is prepared to have a well defined frequency and non-zero wavevector. We demonstrate how the crystalline "density" as well as the time and space textures of the resulting crystal may be tuned by varying the experimental parameters: external static magnetic field, temperature, thickness of the YIG film and power of the radio-frequency field. The proposed space-time crystals provide a new dimension for exploring dynamical phases of matter and can serve as a model nonlinear Floquet system, that brings in touch the rich fields of classical nonlinear waves, magnonics and periodically driven systems. arXiv:1811.05801v1 [cond-mat.quant-gas]
Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in YFeO (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observe in LuBiFeGaO an enhancement 700% greater than that in a YIG film and at very low magnetic fields around 10 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping, with potential applications for spintronic devices.
Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room temperature by means of the Brillouin light scattering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand their properties when externally pumped magnons are transferred towards the condensed state via two distinct channels: a multistage Kolmogorov-Zakharov cascade of the weak-wave turbulence or a one-step kinetic instability process. Our main result is that opening the kinetic instability channel leads to the formation of a much denser magnon condensate and to a stronger magnon supercurrent compared to the cascade mechanism alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.