DC microgrids often present a hierarchical control architecture, requiring integration of communication layers. This leads to the possibility of malicious attackers disrupting the overall system. Motivated by this application, in this paper we present a distributed monitoring scheme to provide attackdetection capabilities for linear Large-Scale Systems. The proposed architecture relies on a Luenberger observer together with a bank of Unknown-Intput Observers (UIOs) at each subsystem, providing attack detection capabilities. We describe the architecture and analyze conditions under which attacks are guaranteed to be detected, and, conversely, when they are stealthy. Our analysis shows that some classes of attacks cannot be detected using either module independently; rather, by exploiting both modules simultaneously, we are able to improve the detection properties of the diagnostic tool as a whole. Theoretical results are backed up by simulations, where our method is applied to a realistic model of a low-voltage DC microgrid under attack.
The paper considers the problem of detecting cyber-attacks occurring in communication networks typically used in the secondary control layer of DC microgrids. The proposed distributed methodology allows for scalable monitoring of a microgrid and is able to detect the presence of data injection attacks in the communications among Distributed Generation Units (DGUs)-governed by consensus-based control-and isolate the communication link over which the attack is injected. Each local attack detector requires limited knowledge regarding the dynamics of its neighbors. Detectability properties of the method are analyzed, as well as a class of undetectable attacks. Some results from numerical simulation are presented to demonstrate the effectiveness of the proposed approach.
The paper proposes a methodology to effectively address the increasingly important problem of distributed faulttolerant control for large-scale interconnected systems. The approach dealt with combines, in a holistic way, a distributed fault detection and isolation algorithm with a specific tube-based model predictive control scheme. A distributed fault-tolerant control strategy is illustrated to guarantee overall stability and constraint satisfaction even after the occurrence of a fault. In particular, each subsystem is controlled and monitored by a local unit. The fault diagnosis component consists of a passive set-based fault detection algorithm and an active fault isolation one, yielding fault-isolability subject to local input and state constraints. The distributed active fault isolation module -thanks to a modification of the local inputs -allows to isolate the fault that has occurred avoiding the usual drawback of controllers that possibly hide the effect of the faults. The Active Fault Isolation method is used as a decision support tool for the fault tolerant control strategy after fault detection. The distributed design of the tube-based model predictive control allows the possible disconnection of faulty subsystems or the reconfiguration of local controllers after fault isolation. Simulation results on a well-known power network benchmark show the effectiveness of the proposed methodology.
The problem of replay attacks in the communication network between Distributed Generation Units (DGUs) of a DC microgrid is examined. The DGUs are regulated through a hierarchical control architecture, and are networked to achieve secondary control objectives. Following analysis of the detectability of replay attacks by a distributed monitoring scheme previously proposed, the need for a watermarking signal is identified. Hence, conditions are given on the watermark in order to guarantee detection of replay attacks, and such a signal is designed. Simulations are then presented to demonstrate the effectiveness of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.