Strongly anisotropic media, where the principal components of the dielectric tensor have opposite signs, are called hyperbolic. Such materials exhibit unique nanophotonic properties enabled by the highly directional propagation of slow-light modes localized at deeply subdiffractional length scales. While artificial hyperbolic metamaterials have been demonstrated, they suffer from high plasmonic losses and require complex nanofabrication, which in turn induces size-dependent limitations on optical confinement. The low-loss, mid-infrared, natural hyperbolic material hexagonal boron nitride is an attractive alternative. Here we report on three-dimensionally confined 'hyperbolic polaritons' in boron nitride nanocones that support four series (up to the seventh order) modes in two spectral bands. The resonant modes obey the predicted aspect ratio dependence and exhibit high-quality factors (Q up to 283) in the strong confinement regime (up to l/86). These observations assert hexagonal boron nitride as a promising platform for studying novel regimes of light-matter interactions and nanophotonic device engineering.
Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called 'flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.
We use scanning near-field optical microscopy to study the response of hexagonal boron nitride nanocones at infrared frequencies, where this material behaves as a hyperbolic medium. The obtained images are dominated by a series of "hot" rings that occur on the sloped sidewalls of the nanocones. The ring positions depend on the incident laser frequency and the nanocone shape. Both dependences are consistent with directional propagation of hyperbolic phononpolariton rays that are launched at the edges and zigzag through the interior of the nanocones, sustaining multiple internal reflections off the sidewalls. Additionally, we observe a strong overall enhancement of the near-field signal at discrete resonance frequencies. These resonances attest to low dielectric losses that permit coherent standing waves of the sub-diffractional polaritons to form. We comment on potential applications of such shape-dependent resonances and the field concentration at the hot rings.
A conventional thermal emitter exhibits a broad emission spectrum with a peak wavelength depending upon the operation temperature. Recently, narrowband thermal emission was realized with periodic gratings or single microstructures of polar crystals supporting distinct optical modes. Here, we exploit the coupling of adjacent phononpolaritonic nanostructures, demonstrating experimentally that the nanometer-scale gaps can control the thermal emission frequency while retaining emission line widths as narrow as 10 cm −1 . This was achieved by using deeply subdiffractional bowtie-shaped silicon carbide nanoantennas. Infrared far-field reflectance spectroscopy, near-field optical nanoimaging, and full-wave electromagnetic simulations were employed to prove that the thermal emission originates from strongly localized surface phonon-polariton resonances of nanoantenna structures. The observed narrow emission line widths and exceptionally small modal volumes provide new opportunities for the user-design of near-and far-field radiation patterns for advancements in infrared spectroscopy, sensing, signaling, communications, coherent thermal emission, and infrared photodetection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.