Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1The following paper is the final version prior to publication on 22 September 2015. are proposed, the way in which indicators could contribute to classification is discussed. All of the methods described in Table 1 consider a hierarchy of spatial units, but the degree to which they develop the other aspects of the conceptual approach proposed by Frissell et al.(1986) varies widely.2. Many of the frameworks focus entirely on hydromorphological processes and forms that are either directly measured or inferred. This is because interactions between processes and forms control the dynamic morphology or behaviour of rivers and their mosaics of habitats.Hydromorphological processes drive longitudinal and lateral connectivity within river networks and corridors, the assemblage and turnover of physical habitats, and the sedimentary and vegetation structures associated with those habitats.3. Some frameworks are conceptual, providing a way of thinking about or structuring analyses of river systems, and interpreting their processes, morphology and function (e.g. Frissell et al., 1986;Habersack, 2000;Fausch et al., 2002;Thorp et al., 2006;Beechie et al., 2010;McCluney et al., 2014). Some frameworks are more quantitative, generating one or more indices or classifications of spatial units that support assessment of river systems (e.g. Rosgen, 1994;González del Tánago and García de Jalón, 2004;Merovich et al., 2013;Rinaldi et al., 2013Rinaldi et al., , 2015a MacDonald, 2002;Brierley and Fryirs, 2005;Beechie et al., 2010; Rinaldi et al., 2013a Rinaldi et al., , 2015.In some cases, theoretical or historical analyses or consideration of specific future scenarios are used to develop space-time understanding that can support management decisionmaking (e.g. Buffington, 1997, 1998;Montgomery and MacDonald, 2002;Benda et al., 2004;Brierley and Fryirs, 2005;McCluney et al., 2014 , 1997, 1998Montgomery and MacDonald, 2002;Benda et al., 2004;Brierley and Fryirs, 2005;Merovich et al., 2013;Rinaldi et al., 2013Rinaldi et al., , 2015a. Furthermore, some of the frameworks include indicators of human pressures and their impacts (e.g. Merovich et al., 2013;McCluney et al., 2014;Rinaldi et al., 2013Rinaldi et al., , 2015a.6. Finally, although most frameworks could be described as incorporating processes to some degree, some methods are particularly process-based, even when processes are inferred from forms and associations rather than being quantified by direct measurements.Frameworks that consider temporal dynamics and trajectories of historical change (see point 4, above) are particularly effective in developing understanding of processes and the impacts of changed processes cascading through time and across spatial scales.Although the list of frameworks presented in Table 1 is far from comprehensive, ...
In this paper, we use a physical modeling approach to explore the effect of lateral confinement on gravel bed river planform style, bed morphology, and sediment transport processes. A set of 27 runs was performed in a large flume (25 m long, 2.9 m wide), with constant longitudinal slope (0.01) and uniform grain size (1 mm), changing the water discharge (1.5-2.5 L/s) and the channel width (0.15-1.5 m) to model a wide range of channel configurations, from narrow, straight, embanked channels to wide braided networks. The outcomes of each run were characterized by a detailed digital elevation model describing channel morphology, a map of dry areas and areas actively transporting sediment within the channel, and continuous monitoring of the amount of sediment transported through the flume outlet. Analysis reveals strong relationships between unit stream power and parameters describing the channel morphology. In particular, a smooth transition is observed between narrow channels with an almost rectangular crosssection profile (with sediment transport occurring across the entire channel width) and complex braided networks where only a limited proportion (30%) of the bed is active. This transition is captured by descriptors of the bed elevation frequency distribution, e.g., standard deviation, skewness, and kurtosis. These summary statistics represent potentially useful indicators of bed morphology that are compared with other commonly used summary indicators such as the braiding index and the type and number of bars.
Despite increasing recognition of the potential of aquatic biota to act as ‘geomorphic agents’, key knowledge gaps exist in relation to biotic drivers of fine sediment dynamics at microscales and particularly the role of invasive species. This study explores the impacts of invasive signal crayfish on suspended sediment dynamics at the patch scale through laboratory and field study. Three hypotheses are presented and tested: (1) that signal crayfish generate pulses of fine sediment mobilisation through burrowing and movement that are detectable in the flow field; (2) that such pulses may be more frequent during nocturnal periods when signal crayfish are known to be most active; and (3) that cumulatively the pulses would be sufficient to drive an overall increase in turbidity. Laboratory mesocosm experiments were used to explore crayfish impacts on suspended sediment concentrations for two treatments: clay banks and clay bed substrate. For the field study, high frequency near‐bed and mid‐flow turbidity time series from a lowland river with known high densities of signal crayfish were examined. Laboratory data demonstrate the direct influence of signal crayfish on mobilisation of pulses of fine sediment through burrowing into banks and fine bed material, with evidence of enhanced activity levels around the mid‐point of the nocturnal period. Similar patterns of pulsed fine sediment mobilisation identified under field conditions follow a clear nocturnal trend and appear capable of driving an increase in ambient turbidity levels. The findings indicate that signal crayfish have the potential to influence suspended sediment yields, with implications for morphological change, physical habitat quality and the transfer of nutrients and contaminants. This is particularly important given the spread of signal crayfish across Europe and their presence in extremely high densities in many catchments. Further process‐based studies are required to develop a full understanding of impacts across a range of river styles. Copyright © 2013 John Wiley & Sons, Ltd.
11We introduce PyRIS an automated, process-based software for extracting extensive meandering and anabranching river morphodynamics from multitemporal satellite imagery, including a unique ability to quantify river bars dynamic. PyRIS provides three main computations: (i) detection of planform centerline including complex river patterns, (ii) computation of migration vectors between subsequent centerlines, and (iii) analysis of sediment bars dynamics. PyRIS was validated against several test cases in the Amazon River basin, specifically i) main channel extraction from the anabranching Amazon river, ii) migration analysis following a large cutoff on the Ucayali River and iii) detection of sediment bar migration on the Xingu River. Tests prove the capability of PyRIS to detect the main channel in anabranching structures and chute cutoffs. PyRIS can extract extensive morphodynamic information with unprecedented automation levels and reasonable computational effort (5 hours for 28 Landsat images of a 240km reach of the Xingu River on a 3.20GHz Intel).
Sediment quantity and quality are key considerations in the sustainable management of fluvial systems. Increasing attention is being paid to the role of aquatic biota as geomorphic agents, capable of altering the composition, mobilization and transport of fluvial sediments at various spatiotemporal scales. In this paper invasive species are presented as a special case since: (1) populations may not be constrained by factors characteristic of their native habitats; and (2) they represent a disturbance to which the system may not be resilient. Discussion is centred on the signal crayfish which has rapidly colonized catchments in Europe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.