p53 is the most frequently mutated, well-studied tumor-suppressor gene, yet the molecular basis of the switch from p53-induced cell-cycle arrest to apoptosis remains poorly understood. Using a combination of transcriptomics and functional genomics, we unexpectedly identified a nodal role for the caspase-8 paralog and only human pseudo-caspase, FLIP(L), in regulating this switch. Moreover, we identify FLIP(L) as a direct p53 transcriptional target gene that is rapidly up-regulated in response to Nutlin-3A, an MDM2 inhibitor that potently activates p53. Genetically or pharmacologically inhibiting expression of FLIP(L) using siRNA or entinostat (a clinically relevant class-I HDAC inhibitor) efficiently promoted apoptosis in colorectal cancer cells in response to Nutlin-3A, which otherwise predominantly induced cell-cycle arrest. Enhanced apoptosis was also observed when entinostat was combined with clinically relevant, p53-activating chemotherapy in vitro, and this translated into enhanced in vivo efficacy. Mechanistically, FLIP(L) inhibited p53-induced apoptosis by blocking activation of caspase-8 by the TRAIL-R2/DR5 death receptor; notably, this activation was not dependent on receptor engagement by its ligand, TRAIL. In the absence of caspase-8, another of its paralogs, caspase-10 (also transcriptionally up-regulated by p53), induced apoptosis in Nutlin-3A-treated, FLIP(L)-depleted cells, albeit to a lesser extent than in caspase-8-proficient cells. FLIP(L) depletion also modulated transcription of canonical p53 target genes, suppressing p53-induced expression of the cell-cycle regulator p21 and enhancing p53-induced up-regulation of proapoptotic PUMA. Thus, even in the absence of caspase-8/10, FLIP(L) silencing promoted p53-induced apoptosis by enhancing PUMA expression. Thus, we report unexpected, therapeutically relevant roles for FLIP(L) in determining cell fate following p53 activation.
Early Growth Response 1 (EGR1) is a stress response transcription factor with multiple tumour suppressor roles in breast tissue, whose expression is often lost in breast cancers. We have previously shown that the breast cancer oncogene TBX2 (T-BOX2) interacts with EGR1 to co-repress EGR1-target genes including the breast tumour suppressor NDRG1. Here, we show the mechanistic basis of this TBX2 repression complex. We show that siRNA knockdown of TBX2, EGR1, Heterochromatin Protein 1 (HP1) isoforms and the generic HP1-associated corepressor protein KAP1 all resulted in growth inhibition of TBX2-expressing breast cancer cells. We show that TBX2 interacts with HP1 through a conserved HP1-binding motif in its N-terminus, which in turn leads to the recruitment of KAP1 and other associated proteins. Mutation of the TBX2 HP1 binding domain abrogates the TBX2-HP1 interaction and loss of repression of target genes such as NDRG1. Chromatin-immunoprecipitation (ChIP) assays showed that TBX2 establishes a repressive chromatin mark, specifically H3K9me3, around the NDRG1 proximal promoter coincident with the recruitment of the DNA methyltransferase DNMT3B and histone methyltransferase (HMT) complex components (G9A, Enhancer of Zeste 2 (EZH2) and Suppressor of Zeste 12 (SUZ12)). Knockdown of G9A, EZH2 or SUZ12 resulted in upregulation of TBX2/EGR1 co-regulated targets accompanied by a dramatic inhibition of cell proliferation. We show that a generic inhibitor of HMT activity, DzNep, phenocopies expression of an inducible dominant negative TBX2. Knockdown of TBX2, KAP1 or HP1 inhibited NDRG1 promoter decoration specifically with the H3K9me3 repression mark. Correspondingly, treatment with a G9A inhibitor effectively reversed TBX2 repression of NDRG1 and synergistically downregulated cell proliferation following TBX2 functional inhibition. These data demonstrate that TBX2 promotes suppression of normal growth control mechanisms through recruitment of a large repression complex to EGR1-responsive promoters leading to the uncontrolled proliferation of breast cancer cells.
Chromosome 17q23 amplification occurs in 20% of primary breast tumours and is associated with poor outcome. The TBX2 gene is located on 17q23 and is often over-expressed in this breast tumour subset. TBX2 is an anti-senescence gene, promoting cell growth and survival through repression of Tumour Suppressor Genes (TSGs), such as NDRG1 and CST6. Previously we found that TBX2 cooperates with the PRC2 complex to repress several TSGs, and that PRC2 inhibition restored NDRG1 expression to impede cellular proliferation. Here, we now identify CoREST proteins, LSD1 and ZNF217, as novel interactors of TBX2. Genetic or pharmacological targeting of CoREST emulated TBX2 loss, inducing NDRG1 expression and abolishing breast cancer growth in vitro and in vivo. Furthermore, we uncover that TBX2/CoREST targeting of NDRG1 is achieved by recruitment of TBX2 to the NDRG1 promoter by Sp1, the abolishment of which resulted in NDRG1 upregulation and diminished cancer cell proliferation. Through ChIP-seq we reveal that 30% of TBX2-bound promoters are shared with ZNF217 and identify novel targets repressed by TBX2/CoREST; of these targets a lncRNA, LINC00111, behaves as a negative regulator of cell proliferation. Overall, these data indicate that inhibition of CoREST proteins represents a promising therapeutic intervention for TBX2-addicted breast tumours.
Background The tumor suppressive functions of the p53 transcription factor are inactivated via mutations or suppressed through non-mutational mechanisms in almost all cancer cells. A better understanding of the mechanisms through which p53 differentially regulates cell cycle arrest and cell death is important to maximize benefits from wild-type p53-dependent therapeutic strategies Methods A panel of matched p53 wild-type and deficient colorectal cancer cell line models were studied, using Nutlin-3A and Oxaliplatin as direct and indirect p53 activating agents respectively. A number of molecular (Western blot, RT-PCR), phenotypic (cell death) and genomic analyses were used to investigate the importance of p53 and its downstream transcriptional programs. Results Here, we report that activation of pro-apoptotic p53 targets in colorectal cancer cells imposes a critical targetable dependence on the long splice form of the caspase-8 regulator FLIP (FLIPL) for survival. p53 binds the promoter of the FLIP gene (CFLAR) and upregulates FLIPL expression in response to the p53 agonist Nutlin-3A in a manner dependent on HDAC1/2/3 activity. As such, preventing FLIPL upregulation with the clinically relevant HDAC1/2/3-selective inhibitor Entinostat promotes apoptosis induction in response to Nutlin-3A (or p53-activating chemotherapy), which otherwise predominantly induces growth arrest despite upregulating a range of pro-apoptotic target genes. Cell death in response to Nutlin-3A in FLIPL-depleted cells is primarily mediated via caspase-8. However, in the absence of caspase-8, apoptosis is delayed, but not prevented and is mediated via caspase-10. Of note, the cell death induced in both caspase-8-proficient and -deficient cells is mediated via TRAIL-R2 in a ligand-independent manner. Conclusion In summary, this work has uncovered novel, clinically-relevant biology, in which p53-mediated upregulation of FLIPL primes cells for TRAIL-R2-mediated apoptosis and identifies FLIPL as a key target for overcoming resistance to p53-stabilising agents in p53 wild-type cancers. Moreover, we show the potential of combining Nutlin-3A (or other p53 activating chemotherapies) with the clinically relevant Class I HDAC inhibitor Entinostat for the treatment of p53 wild-type CRC, and identify FLIPL as a critical p53-induced signaling node, the inhibition of which is necessary to promote Nutlin-3A-induced apoptosis. Citation Format: Alexander McIntyre, Andrea Lees, Fiammetta Falcone, Gemma Gregg, Sessler Tamas, Gerard Quinn, Nyree Crawford, Darragh McArt, Phillip Dunne, Mark Lawler, Longley B. Daniel, Simon S. McDade. p53 activation induces a targetable dependence on FLIPL [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4385.
Background: How p53 differentially activates cell cycle arrest versus cell death remains poorly understood. Understanding the mechanisms governing the switch from p53-induced cell-fates is important for optimising efficacy of p53-activating therapies, such as DNA damaging chemotherapy and radiotherapy. HDAC inhibitors (HDACi) have potential to enhance p53 induced cell death through enhancing p53 activation and altering regulation of other cell death regulatory proteins. Methods: We utilised a panel of matched p53 wild-type and deficient colorectal cancer cell line models to the potential for HDACi to augment cell death induced by direct and indirect p53 activating agents. A number of molecular (Western blot, RT-PCR), phenotypic (cell death) and functional genomic (RNA-seq, CRISPR, ChIP-seq) analyses were used to investigate the importance of p53 and its downstream transcriptional programs. Results: Here we report that upregulation of canonical pro-apoptotic p53 target genes in colon cancer cells imposes critical dependence on the long splice form of the caspase-8 regulator FLIP (FLIP(L)), which we identify as a direct p53 transcriptional target. Inhibiting FLIP(L) expression with siRNA or Class-I HDAC inhibitors promotes apoptosis in response to p53 activation by the MDM2 inhibitor Nutlin-3A, which otherwise predominantly induces cell-cycle arrest. When FLIP(L) upregulation is inhibited, apoptosis is induced in response to p53 activation via a ligand-independent TRAIL-R2/caspase-8 complex, which is distinct from the ligand-dependent DISC. Notably, FLIP(L) depletion inhibits p53-induced expression of the cell cycle regulator p21 and enhances p53-mediated upregulation of PUMA, with the latter activating mitochondrial-mediated apoptosis in FLIP(L)-depleted, Nutlin-3A-treated cells lacking TRAIL-R2/caspase-8. Conclusion: Acute p53-mediated transcriptional upregulation of FLIP(L) plays an unexpected nodal role in determining cell fate following p53 activation. This is mediated through two previously undescribed mechanisms, preventing apoptosis by a ligand-independent TRAIL-R2 complex and by suppressing expression of pro-apoptotic PUMA. Which, importantly imposes a critical dependence on FLIP(L) which can be overcome through combinations with class-I HDAC inhibitors such as Entinostat. Citation Format: Andrea Lees, Alexander J. McIntyre J. McIntyre, Nyree T. Crawford, Fiammetta Falcone, Chris McCann, Gerard P. Quinn, Jamie Z. Roberts, Thomas Sessler, Peter F. Gallagher, Gemma M. Gregg, Katherine McAllister, Kirsty M. McLaughlin, Wendy L. Allen, Caitriona Holohan, Laurence J. Egan, Aideen E. Ryan, Melissa Labonte-Wilson, Phillip D. Dunne, Mark Wappett, Vicky M. Coye, Patrick G. Johnston, Emma M. Kerr, Daniel B. Longley, Simon S. McDade. FLIP(L) determines colon cancer cell fate following p53 activation [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 2409.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.