In the absence of preorganization, macrocyclization reactions are often plagued by oligomeric and polymeric side products. Here, a network of hydrogen bonds was identified as the basis for quantitative yields of macrocycles derived from the dimerization of monomers. Oligomers and polymers were not observed. Macrocyclization, the result of the formation of two hydrazones, was hypothesized to proceed in two steps. After condensation to yield the monohydrazone, a network of hydrogen bonds formed to preorganize the terminal acetal and hydrazine groups for cyclization. Experimental evidence for preorganization derived from macrocycles and acyclic models. Solution NMR spectroscopy and single-crystal X-ray diffraction revealed that the macrocycles isolated from the cyclization reaction were protonated twice. These protons contributed to an intramolecular network of hydrogen bonds that engaged distant carbonyl groups to realize a long-range order. DFT calculations showed that this network of hydrogen bonds contributed 8.7 kcal/mol to stability. Acyclic models recapitulated this network in solution. Condensation of an acetal and a triazinyl hydrazine, which adopted a number of conformational isomers, yielded a hydrazone that adopted a favored rotamer conformation in solution. The critical hydrogen-bonded proton was also evident. DFT calculations of acyclic models showed that the rotamers were isoenergetic when deprotonated. Upon protonation, however, energies diverged with one low-energy rotamer adopting the conformation observed in the macrocycle. This conformation anchored the network of hydrogen bonds of the intermediate. Computation revealed that the hydrogen-bonded network in the acyclic intermediate contributed up to 14 kcal/mol of stability and preorganized the acetal and hydrazine for cyclization.
Inspired by therapeutic potential, the molecular engineering of macrocycles is garnering increased interest. Exercising control with design, however, is challenging due to the dynamic behavior that these molecules must demonstrate in order to be bioactive. Herein, the value of metadynamics simulations is demonstrated: the free-energy surfaces calculated reveal folded and flattened accessible conformations of a 24-atom macrocycle separated by barriers of ∼6 kT under experimentally relevant conditions. Simulations reveal that the dominant conformer is folded—an observation consistent with a solid-state structure determined by X-ray crystallography and a network of rOes established by 1 H NMR. Simulations suggest that the macrocycle exists as a rapidly interconverting pair of enantiomeric, folded structures. Experimentally, 1 H NMR shows a single species at room temperature. However, at lower temperature, the interconversion rate between these enantiomers becomes markedly slower, resulting in the decoalescence of enantiotopic methylene protons into diastereotopic, distinguishable resonances due to the persistence of conformational chirality. The emergence of conformational chirality provides critical experimental support for the simulations, revealing the dynamic nature of the scaffold—a trait deemed critical for oral bioactivity.
Experiment and computation are used to develop a model to rapidly predict solution structures of macrocycles sharing the same Murcko framework. These 24-atom triazine macrocycles result from the quantitative dimerization of identical monomers presenting a hydrazine group and an acetal tethered to an amino acid linker. Monomers comprising glycine and the β-branched amino acids threonine, valine, and isoleucine yield macrocycles G-G, T-T, V-V, and I-I, respectively. Elements common to all members of the framework include the efficiency of macrocyclization (quantitative), the solution- and solid-state structures (folded), the site of protonation (opposite the auxiliary dimethylamine group), the geometry of the hydrazone (E), the C2 symmetry of the subunits (conserved), and the rotamer state adopted. In aggregate, the data reveal metrics predictive of the three-dimensional solution structure that derive from the fingerprint region of the 1D 1H spectrum and a network of rOes from a single resonance. The metrics also afford delineation of more nuanced structural features that allow subpopulations to be identified among the members of the framework. Well-tempered metadynamics provides free energy surfaces and population distributions of these macrocycles. The areas of the free energy surface decrease with increasing steric bulk (G-G > V-V ∼ T-T > I-I). In addition, the surfaces are increasingly isoenergetic with decreasing steric bulk (G-G > V-V ∼ T-T > I-I).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.