Attention is a fundamental cognitive process that is critical for essentially all aspects of higher-order cognition and real-world activities. Younger generations have deeply embraced information technology and multitasking in their personal lives, school, and the workplace, creating myriad challenges to their attention. While improving sustained attention in healthy young adults would be beneficial, enhancing this ability has proven notoriously difficult in this age group. Here we show that six-weeks of engagement with a meditation-inspired, closed-loop software program (MediTrain) delivered on mobile devices led to gains in both sustained attention and working memory in healthy young adults (
n
= 22). These improvements were associated with positive changes in key neural signatures of attentional control (frontal theta inter-trial coherence and parietal P3b latency), as measured by electroencephalography. Our findings suggest the utility of delivering aspects of the ancient practice of focused-attention meditation in a modern, technology-based approach and its benefits on enhancing sustained attention.
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental condition characterized by diminished attentional control. Critically, these difficulties are related to negative consequences in real-life functioning both during development and into adulthood. There is now growing evidence that modulating the underlying neural circuits related to attention can improve behavior and brain function in children with ADHD. We have previously shown that game-based digital therapeutics targeting a key neural marker of attention–midline frontal theta (MFT)–yield positive effects on attentional control in several populations. However, the effects of such digital therapeutics in children with ADHD and no other comorbidities has not been yet examined. To address this gap, we assessed a sample of 25 children with ADHD (8–12 years old) on neural, behavioral, and clinical metrics of attention before and after a 4-week at-home intervention on an iPad targeting MFT circuitry. We found that children showed enhancements on a neural measure of attention (MFT power), as well as on objective behavioral measures of attention and parent reports of clinical ADHD symptoms. Importantly, we observed relationships between the neural and behavioral cognitive improvements, demonstrating that those children who showed the largest intervention-related neural gains were also those that improved the most on the behavioral tasks indexing attention. These findings provide support for using targeted, digital therapeutics to enhance multiple features of attentional control in children with ADHD.
Study registration: ClinicalTrials.gov registry (NCT03844269) https://clinicaltrials.gov/ct2/show/NCT03844269.
A large body of work has investigated the effects of attention and expectation on early sensory processing to support decision making. In a recent paper published in The Journal of Neuroscience, Rungratsameetaweemana et al. (Rungratsameetaweemana N, Itthipuripat S, Salazar A, Serences JT. J Neurosci 38: 5632–5648, 2018) found that expectations driven by implicitly learned task regularities do not modulate neural markers of early visual processing. Here, we discuss these findings and propose several lines of follow-up analyses and experiments that could expand on these findings in the broader perceptual decision making literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.