Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies.
Molecular knots occur in DNA, proteins, and other macromolecules. However, the benefits that can potentially arise from tying molecules in knots are, for the most part, unclear. Here, we report on a synthetic molecular pentafoil knot that allosterically initiates or regulates catalyzed chemical reactions by controlling the in situ generation of a carbocation formed through the knot-promoted cleavage of a carbon-halogen bond. The knot architecture is crucial to this function because it restricts the conformations that the molecular chain can adopt and prevents the formation of catalytically inactive species upon metal ion binding. Unknotted analogs are not catalytically active. Our results suggest that knotting molecules may be a useful strategy for reducing the degrees of freedom of flexible chains, enabling them to adopt what are otherwise thermodynamically inaccessible functional conformations.
Knots may ultimately prove just as versatile and useful at the nanoscale as at the macroscale. However, the lack of synthetic routes to all but the simplest molecular knots currently prevents systematic investigation of the influence of knotting at the molecular level. We found that it is possible to assemble four building blocks into three braided ligand strands. Octahedral iron(II) ions control the relative positions of the three strands at each crossing point in a circular triple helicate, while structural constraints on the ligands determine the braiding connections. This approach enables two-step assembly of a molecular 8 knot featuring eight nonalternating crossings in a 192-atom closed loop ~20 nanometers in length. The resolved metal-free 8 knot enantiomers have pronounced features in their circular dichroism spectra resulting solely from topological chirality.
We describe the synthesis of a [2]catenane that consists of two triply entwined 114-membered rings, a molecular link. The woven scaffold is a hexameric circular helicate generated by the assembly of six tris(bipyridine) ligands with six iron(II) cations, with the size of the helicate promoted by the use of sulfate counterions. The structure of the ligand extension directs subsequent covalent capture of the catenane by ring-closing olefin metathesis. Confirmation of the Star of David topology (two rings, six crossings) is provided by NMR spectroscopy, mass spectrometry and X-ray crystallography. Extraction of the iron(II) ions with tetrasodium ethylenediaminetetraacetate affords the wholly organic molecular link. The self-assembly of interwoven circular frameworks of controlled size, and their subsequent closure by multiple directed covalent bond-forming reactions, provides a powerful strategy for the synthesis of molecular topologies of ever-increasing complexity.
The simultaneous synthesis of a molecular nine-crossing composite knot that contains three trefoil tangles of the same handedness and a [Formula: see text] link (a type of cyclic [3]catenane topologically constrained to always have at least three twists within the links) is reported. Both compounds contain high degrees of topological writhe (w = 9), a structural feature of supercoiled DNA. The entwined products are generated from the cyclization of a hexameric Fe(II) circular helicate by ring-closing olefin metathesis, with the mixture of topological isomers formed as a result of different ligand connectivity patterns. The metal-coordinated composite knot was isolated by crystallization, the topology unambiguously proven by tandem mass spectrometry, with X-ray crystallography confirming that the 324-atom loop crosses itself nine times with matching handedness (all Δ or all Λ) at every metal centre within each molecule. Controlling the connectivity of the ligand end groups on circular metal helicate scaffolds provides an effective synthetic strategy for the stereoselective synthesis of composite knots and other complex molecular topologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.