Rationale: Delayed ischemic neurological deficit is the most common cause of neurological impairment and unfavorable prognosis in patients with subarachnoid hemorrhage (SAH). Despite the existence of neuroimaging modalities that depict the onset of the accompanying cerebral vasospasm, preventive and therapeutic options are limited and fail to improve outcome owing to an insufficient pathomechanistic understanding of the delayed perfusion deficit. Previous studies have suggested that BOXes (bilirubin oxidation end products), originating from released heme surrounding ruptured blood vessels, are involved in arterial vasoconstriction. Recently, isolated intermediates of oxidative bilirubin degradation, known as PDPs (propentdyopents), have been considered as potential additional effectors in the development of arterial vasoconstriction. Objective: To investigate whether PDPs and BOXes are present in hemorrhagic cerebrospinal fluid and involved in the vasoconstriction of cerebral arterioles. Methods and Results: Via liquid chromatography/mass spectrometry, we measured increased PDP and BOX concentrations in cerebrospinal fluid of SAH patients compared with control subjects. Using differential interference contrast microscopy, we analyzed the vasoactivity of PDP isomers in vitro by monitoring the arteriolar diameter in mouse acute brain slices. We found an arteriolar constriction on application of PDPs in the concentration range that occurs in the cerebrospinal fluid of patients with SAH. By imaging arteriolar diameter changes using 2-photon microscopy in vivo, we demonstrated a short-onset vasoconstriction after intrathecal injection of either PDPs or BOXes. Using magnetic resonance imaging, we observed a long-term PDP-induced delay in cerebral perfusion. For all conditions, the arteriolar narrowing was dependent on functional big conductance potassium channels and was absent in big conductance potassium channels knockout mice. Conclusions: For the first time, we have quantified significantly higher concentrations of PDP and BOX isomers in the cerebrospinal fluid of patients with SAH compared to controls. The vasoconstrictive effect caused by PDPs in vitro and in vivo suggests a hitherto unrecognized pathway contributing to the pathogenesis of delayed ischemic deficit in patients with SAH.
BackgroundDelayed cerebral vasospasm is the most common cause of mortality and severe neurological impairment in patients who survive subarachnoid hemorrhage. Despite improvements in the field of diagnostic imaging, options for prevention and medical treatment—primarily with the calcium channel antagonist nimodipine or hemodynamic manipulations—are insufficient. Previous studies have suggested that heme and bilirubin oxidation end products, originating from degraded hemoglobin around ruptured blood vessels, are involved in the development of vasospasm by inhibiting large conductance BKCa potassium channels in vascular smooth muscle cells. In this study, we identify individual heme degradation products regulating arteriolar diameter in dependence of BKCa channel activity.Methods and ResultsUsing differential interference contrast video microscopy in acute brain slices, we determined diameter changes of intracerebral arterioles in mouse visual cortex. In preconstricted vessels, the specific BKCa channel blockers paxilline and iberiotoxin as well as iron‐containing hemin caused vasoconstriction. In addition, the bilirubin oxidation end product Z‐BOX A showed a stronger vasoconstrictive potency than its regio‐isomer Z‐BOX B. Importantly, Z‐BOX A had the same vasoconstrictive effect, independent of its origin from oxidative degradation or chemical synthesis. Finally, in slices of Slo1‐deficient knockout mice, paxilline and Z‐BOX A remained ineffective in changing arteriole diameter.ConclusionsWe identified individual components of the oxidative bilirubin degradation that led to vasoconstriction of cerebral arterioles. The vasoconstrictive effect of Z‐BOX A and Z‐BOX B was mediated by BKCa channel activity that might represent a signaling pathway in the occurrence of delayed cerebral vasospasm in subarachnoid hemorrhage patients.
Delayed cerebral ischemia (DCI) caused by cerebral vasospasm is the leading determinant of poor outcome and mortality in subarachnoid hemorrhage (SAH) patients, but current treatment options lack effective prevention and therapy. Two substance families of heme degradation products (HDPs), bilirubin oxidation end products (BOXes) and propentdyopents (PDPs), are elicitors of pathologic cerebral hypoperfusion after SAH. Z -configured HDPs can be photoconverted into the corresponding E -isomers. We hypothesize that photoconversion is a detoxification mechanism to prevent and treat DCI. We irradiated purified Z -BOXes and Z -PDPs with UV/Vis light and documented the Z – E photoconversion. E -BOX A slowly reisomerizes to the thermodynamically favored Z -configuration in protein-containing media. In contrast to vasoconstrictive Z -BOX A, E -BOX A does not cause vasoconstriction in cerebral arterioles in vitro and in vivo in wild-type mice. Our results enable a critical assessment of light-induced intrathecal photoconversion and suggest the use of phototherapy to prevent and cure HDP-mediated cerebral vasospasms.
Background and ObjectivesNodo-paranodopathies are peripheral neuropathies with dysfunction of the node of Ranvier. Affected patients who are seropositive for antibodies against adhesion molecules like contactin-1 and neurofascin show distinct clinical features and a disruption of the paranodal complex. An axoglial dysjunction is also a characteristic finding of diabetic neuropathy. Here, we aim to investigate a possible association of antibody-mediated nodo-paranodopathy and diabetes mellitus (DM).MethodsWe retrospectively analyzed clinical data of 227 patients with chronic inflammatory demyelinating polyradiculoneuropathy and Guillain-Barré syndrome from multiple centers in Germany who had undergone diagnostic testing for antiparanodal antibodies targeting neurofascin-155, pan-neurofascin, contactin-1–associated protein 1, and contactin-1. To study possible direct pathogenic effects of antiparanodal antibodies, we performed immunofluorescence binding assays on human pancreatic tissue sections.ResultsThe frequency of DM was 33.3% in seropositive patients and thus higher compared with seronegative patients (14.1%, OR = 3.04, 95% CI = 1.31–6.80). The relative risk of DM in seropositive patients was 3.4-fold higher compared with the general German population. Seropositive patients with DM most frequently harbored anti–contactin-1 antibodies and had higher antibody titers than seropositive patients without DM. The diagnosis of DM preceded the onset of neuropathy in seropositive patients. No immunoreactivity of antiparanodal antibodies against pancreatic tissue was detected.DiscussionWe report an association of nodo-paranodopathy and DM. Our results suggest that DM may be a potential risk factor for predisposing to developing nodo-paranodopathy and argue against DM being induced by the autoantibodies. Our findings set the basis for further research investigating underlying immunopathogenetic connections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.