This paper presents a novel framework for traffic prediction of IoT devices activated by binary Markovian events. First, we consider a massive set of IoT devices whose activation events are modeled by an On-Off Markov process with known transition probabilities. Next, we exploit the temporal correlation of the traffic events and apply the forward algorithm in the context of hidden Markov models (HMM) in order to predict the activation likelihood of each IoT device. Finally, we apply the fast uplink grant scheme in order to allocate resources to the IoT devices that have the maximal likelihood for transmission. In order to evaluate the performance of the proposed scheme, we define the regret metric as the number of missed resource allocation opportunities. The proposed fast uplink scheme based on traffic prediction outperforms both conventional random access and time division duplex in terms of regret and efficiency of system usage, while it maintains its superiority over random access in terms of average age of information for massive deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.