We have captured an 8.7 A conformational change that takes place in the cleavage site of the hammerhead ribozyme during self-cleavage, using X-ray crystallography combined with physical and chemical trapping techniques. This rearrangement brings the hammerhead ribozyme from the ground state into a conformation that is poised to form the transition state geometry required for hammerhead RNA self-cleavage. Use of a 5'-C-methylated ribose adjacent to the cleavage site permits this ordinarily transient conformational change to be kinetically trapped and observed crystallographically after initiating the hammerhead ribozyme reaction in the crystal. Cleavage of the corresponding unmodified hammerhead ribozyme in the crystal under otherwise identical conditions is faster than in solution, indicating that we have indeed trapped a catalytically relevant intermediate form of this RNA enzyme.
A systematic study of selectively modified, 36-mer hammerhead ribozymes has resulted in the identification of a generic, catalytically active and nuclease stable ribozyme motif containing 5 ribose residues, 29 -30 2-O-Me nucleotides, 1-2 other 2-modified nucleotides at positions U4 and U7, and a 3-3-linked nucleotide "cap." Eight 2-modified uridine residues were introduced at positions U4 and/or U7. From the resulting set of ribozymes, several have almost wild-type catalytic activity and significantly improved stability. Specifically, ribozymes containing 2-NH 2 substitutions at U4 and U7, or 2-C-allyl substitutions at U4, retain most of their catalytic activity when compared to the all-RNA parent. Their serum half-lives were 5-8 h in a variety of biological fluids, including human serum, while the all-RNA parent ribozyme exhibits a stability half-life of only ϳ0.1 min. The addition of a 3-3-linked nucleotide "cap" (inverted T) did not affect catalysis but increased the serum half-lives of these two ribozymes to >260 h at nanomolar concentrations. This represents an overall increase in stability/activity of 53,000 -80,000-fold compared to the all-RNA parent ribozyme.Trans-acting ribozymes exert their activity in a highly specific manner and are therefore not expected to be detrimental to non-targeted cell functions. Because of this specificity, the concept of exploiting ribozymes for cleaving a specific target mRNA transcript is now emerging as a therapeutic strategy in human disease and agriculture (Cech, 1992;Bratty et al., 1993). For ribozymes to function as therapeutic agents, they may be introduced exogenously or produced endogenously in the target cells. In the former case, the chemically modified ribozyme must maintain its catalytic activity while also being stable to nucleases. A major advantage of chemically synthesized ribozymes is that site-specific modifications may be introduced at any position in the molecule. This approach provides flexibility in designing ribozymes that are catalytically active and stable to nucleases. In this manuscript we show that using this site-specific, chemical modification strategy, ribozymes can be designed that have wild-type catalytic activity and are not cleaved by nucleases.A variety of selective and uniform structural modifications have been applied to oligonucleotides to enhance nuclease resistance (Uhlmann and Peyman, 1990;Beaucage and Iyer, 1993;Milligan et al., 1993). Improvements in the chemical synthesis of RNA (Scaringe et al., 1990;Wincott et al., 1995) have led to the ability to similarly modify ribozymes containing the hammerhead ribozyme core motif Yang et al., 1992) (Fig. 1). Yang et al. (1992) demonstrated that 2Ј-O-Me modification of a ribozyme at all positions except G5, G8, A9, A15.1, and G15.2 (see numbering scheme in Fig. 1) led to a catalytically active molecule having a greatly decreased k cat value in vitro, but a 1000-fold increase in nuclease resistance over that of an all-RNA ribozyme when tested in a yeast extract. In another study (Paolella...
Bones provide essential functions and are sites of unique biochemistry and specialized cells, but can also be sites of disease. The treatment of bone disorders and neoplasia has presented difficulties in the past, and improved delivery of drugs to bone remains an important goal for achieving effective treatments. Drug targeting strategies have improved drug localization to bone by taking advantage of the high mineral concentration unique to the bone hydroxyapatite matrix, as well as tissue-specific cell types. The bisphosphonate molecule class binds specifically to hydroxyapatite and inhibits osteoclast resorption of bone, providing direct treatment for degenerative bone disorders, and as emerging evidence suggests, cancer. These bone-binding molecules also provide the opportunity to deliver other drugs specifically to bone by bisphosphonate conjugation. Bisphosphonate bone-targeted therapies have been successful in treatment of osteoporosis, primary and metastatic neoplasms of the bone, and other bone disorders, as well as refining bone imaging. In this review, we focus upon the use of bisphosphonate conjugates with antineoplastic agents, and overview bisphosphonate based imaging agents, nanoparticles, and other drugs. We also discuss linker design potential and the current state of bisphosphonate conjugate research progress. Ongoing investigations continue to expand the possibilities for bone-targeted therapeutics and for extending their reach into clinical practice.
The most highly conserved nucleotides in D5, an essential active site component of group II introns, consist of an AGC triad, of which the G is invariant. To understand how this G participates in catalysis, the mechanistic contribution of its functional groups was examined. We observed that the exocyclic amine of G participates in ground state interactions that stabilize D5 binding from the minor groove. In contrast, each major groove heteroatom of the critical G (specifically N7 or O6) is essential for chemistry. Thus, major groove atoms in an RNA helix can participate in catalysis, despite their presumed inaccessibility. N7 or O6 of the critical G could engage in critical tertiary interactions with the rest of the intron or they could, together with phosphate oxygens, serve as a binding site for catalytic metal ions.
The hairpin ribozyme is a small self-cleaving RNA that can be engineered for RNA cleavage in trans and has potential as a therapeutic agent. We have used a chemical synthesis approach to study the requirements of hairpin RNA cleavage for sugar and base moieties in residues of internal loop B, an essential region in one of the two ribozyme domains. Individual nucleosides were substituted by either a 2'-deoxy-nucleoside, an abasic residue, or a C3-spacer (propyl linker) and the abilities of the modified ribozymes to cleave an RNA substrate were studied in comparison with the wild-type ribozyme. From these results, together with previous studies, we propose a new model for the potential secondary structure of internal loop B of the hairpin ribozyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.