Bacterial genomes have diverged during evolution, resulting in clearcut differences in their nucleotide composition, such as their GC content. The analysis of complete sequences of bacterial genomes also reveals the presence of nonrandom sequence variation, manifest in the frequency profile of specific short oligonucleotides. These frequency profiles constitute highly specific genomic signatures. Based on these differences in oligonucleotide frequency between bacterial genomes, we investigated the possibility of predicting the genome of origin for a specific genomic sequence. To this end, we developed a naïve Bayesian classifier and systematically analyzed 28 eubacterial and archaeal genomes. We found that sequences as short as 400 bases could be correctly classified with an accuracy of 85%. We then applied the classifier to the identification of horizontal gene transfer events in whole-genome sequences and demonstrated the validity of our approach by correctly predicting the transfer of both the superoxide dismutase (sodC) and the bioC gene from Haemophilus influenzae to Neisseria meningitis, correctly identifying both the donor and recipient species. We believe that this classification methodology could be a valuable tool in biodiversity studies.
The density of substance P (SP)-, calcitonin gene-related peptide (CGRP)- and vasoactive intestinal polypeptide (VIP)-immunoreactive (ir) nerve endings was quantitatively evaluated in intact and inflamed gastrocnemius-soleus muscle of the rat. In persistently inflamed muscle (12 days after a single injection of Freund's adjuvant into the muscle), the density of SP-ir fibres was significantly increased. CGRP- and VIP-ir fibres displayed an insignificant increase in density. The density of fibres ir for nerve growth factor (NGF) and for growth-associated protein 43 (GAP-43/B-50), a marker for axonal sprouting, regeneration and synaptic reorganisation, increased significantly in persistently inflamed muscle. The data are consistent with the established contribution of NGF on the expression of SP and GAP-43 in afferent neurones under the influence of a persistent inflammation.
In eleven hemispheres of nine marmoset monkeys (Callithrix jacchus), we have investigated the thalamo-cortical organization of the projections from the pulvinar to the striate and prestriate cortex. In each experiment, single or multiple injections of various retrograde fluorescent tracers were injected into adjacent regions or areas. In two experiments, horseradish peroxidase (HRP) was injected into the lateral geniculate nucleus (LGN) and the lateral pulvinar, respectively. The results show that the thalamo-cortical projection from LGN to striate cortex and from pulvinar to the prestriate cortex are similarly organized, but the geniculo-striate projection is more precise than the pulvinar-prestriate projection. The pulvinar-prestriate projection is topographically organized and preserves topological neighbourhood relations. Projection zones to the various visual areas are concentrically wrapped around each other. The projection zone to area 18 constitutes a central core region. It begins ventro-laterally in PuL where the pulvinar is in contact with the LGN. This contact zone we called the hilus region of the pulvinar. The area 18-projection zone stretches as a central cone into the posterior pulvinar through PuL and into PuM. It is surrounded by the projection zone to the posterior belt of area 19 and this in turn is surrounded by the projection zone to the anterior belt of area 19. The projection zones to area 19 are then surrounded medially and dorsally by zones projection to the temporal and parietal association cortex, respectively. The projection zone to area MT is located medio-ventrally in the posterior pulvinar (PuIP and surrounding nuclei) and coincides with a densely myelinated region. Area 17 also receives input from the pulvinar but probably predominantly in the region of the central visual field. The pulvinar zone projecting to area 17 is located ventrolaterally from the central core region projecting to area 18 and is contiguous laterally with the LGN. If the positions of the vertical and the horizontal meridian in the pulvinar correspond to those in the respective cortical projection zones, a second order visual field representation such as found in area 18, with the horizontal meridian split at an eccentricity of about 7-10 degrees, can also be recognized in the pulvinar.
The concerted and self-organizing behavior of spinal cord segments in generating locomotor patterns is modulated by afferent sensory information and controlled by descending pathways from the brainstem, cerebellum, or cortex. The purpose of this study was to define a minimal set of parameters that could control a similar self-organizing behavior in a two-dimensional neural network. When we implemented synaptic depression and active membrane repolarization as two properties of the neurons, the two-dimensional neural network generated traveling waves. Their wavelength and angle of propagation could be independently controlled by two parameters that modulated excitatory premotor neurons and inhibitory commissural neurons. It is further demonstrated that the selection of wave parameters corresponds to the selection of quadruped gaits.
In recent years, the regulation of the synthesis of nitric oxide (NO) in the central nervous system has attracted much interest because it has been shown that NO is involved in a wide variety of functions such as neuroprotection, neurotoxicity, neurotransmission, and neuroplasticity under physiological and pathophysiological conditions. However, the use of different detection techniques for neuronal nitric oxide synthase (nNOS), different animal species, and different experimental lesions has led to contradictory results concerning the direction of changes in spinal nNOS expression. This paper summarizes the available data on the expression on nNOS in the spinal cord under physiological and pathological conditions and tries to extract some of the basic mechanisms that underlie neuronal up- or downregulation of this enzyme. Wherever possible, results obtained with the NADPH-dependent diaphorase reaction are also included for reasons of comparison. The main conclusion is that changes in spinal nNOS expression critically depend on the type of afferent fibres activated by a specific lesion as well as the intensity and duration of input to the spinal cord. This input may be further modified by supraspinal influences. Thus the exact composition of these factors, which is undoubtfully highly variable between different experimental models, appears to determine whether the spinal NO system responds with an up- or downregulation of nNOS expression or in a bidirectional way. With regard to the diaphorase reaction it is becoming increasingly clear that under pathological conditions data obtained with this reaction differ markedly from those obtained with immunohistochemical visualization of nNOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.