Molecular imprinting aims to create solid materials containing chemical functionalities that are spatially organized by covalent or non-covalent interactions with imprint (or template) molecules during the synthesis process. Subsequent removal of the imprint molecules leaves behind designed sites for the recognition of small molecules, making the material ideally suited for applications such as separations, chemical sensing and catalysis. Until now, the molecular imprinting of bulk polymers and polymer and silica surfaces has been reported, but the extension of these methods to a wider range of materials remains problematic. For example, the formation of substrate-specific cavities within bulk silica, while conceptually straightforward, has been difficult to accomplish experimentally. Here we describe the imprinting of bulk amorphous silicas with single aromatic rings carrying up to three 3-aminopropyltriethoxysilane side groups; this generates and occupies microporosity and attaches functional organic groups to the pore walls in a controlled fashion. The triethoxysilane part of the molecules' side groups is incorporated into the silica framework during sol-gel synthesis, and subsequent removal of the aromatic core creates a cavity with spatially organized aminopropyl groups covalently anchored to the pore walls. We find that the imprinted silicas act as shape-selective base catalysts. Our strategy can be extended to imprint other functional groups, which should give access to a wide range of functionalized materials.
Dielectric and acid-base bifunctional effects are elucidated in heterogeneous aminocatalysis using a synthetic strategy based on bulk silica imprinting. Acid-base cooperativity between silanols and amines yields a bifunctional catalyst for the Henry reaction that forms alpha,beta-unsaturated product via quasi-equilibrated iminium intermediate. Solid-state UV/vis spectroscopy of catalyst materials treated with salicylaldehyde demonstrates zwitterionic iminium ion to be the thermodynamically preferred product in the bifunctional catalyst. This product is observed to a much lesser extent relative to its neutral imine tautomer in primary amine catalysts having outer-sphere silanols partially replaced by aprotic functional groups. One of these primary amine catalysts, consisting of a polar outer-sphere environment derived from cyano-terminated capping groups, has activity comparable to that of the bifunctional catalyst in the Henry reaction, but instead forms the beta-nitro alcohol product in high selectivity (approximately 99%). This appears to be the first observation of selective alcohol formation in primary amine catalysis of the Henry reaction. A primary amine catalyst with a methyl-terminated outer-sphere also produces alcohol, albeit at a rate that is 50-fold slower than the cyano-terminated catalyst, demonstrating that outer-sphere dielectric constant affects catalyst activity. We further investigate the importance of organizational effects in enabling acid-base cooperativity within the context of bifunctional catalysis, and the unique role of the solid surface as a macroscopic ligand to impose this cooperativity. Our results unequivocally demonstrate that reaction mechanism and product selectivity in heterogeneous aminocatalysis are critically dependent on the outer-sphere environment.
Catalysts consisting of metal atoms that are atomically dispersed on supports are gaining wide attention because of the rapidly developing understanding of their structures and functions and the discovery of new, stable catalysts with new properties.
Active-site/surface cooperativity can enhance heterogeneous organic and organometallic catalysis. We review the powerful role of the solid surface in this context for generating local acidity and, as an inner-sphere ligand, for stabilizing immobilized supramolecular assemblies and unsaturated organometallic complexes that are often unstable in solution.
Metallocalixarenes were grafted onto silica using a surface organometallic approach and shown to be active and selective catalysts for epoxidation of alkenes using organic hydroperoxides. Calixarene-Ti(IV) precursors were anchored at surface densities from 0.1 to near-monolayer coverages (0.025-0.25 calixarene nm(-2)). Several spectroscopic methods independently detected calixarene-Ti(IV) connectivity before and after epoxidation catalysis. Kinetic analyses of cyclohexene epoxidation confirmed that the active sites were anchored on the silica surface and were significantly more active than their homogeneous analogues. The steric bulk and multidentate binding of the calixarenes led to structural stability and to single-site behavior during epoxidation catalysis. Rate constants were independent of surface density for cyclohexene epoxidation with tert-butyl hydroperoxide (11.1 +/- 0.3 M(-2) s(-1)) or cumene hydroperoxide (25 +/- 2 M(-2) s(-1)). The materials and methods reported here allow the assembly of robust surface organometallic structures in which the active sites behave as isolated species, even near saturation monolayer coverages. In turn, this makes possible the rational design and synthesis of a class of heterogeneous oxide catalysts with atomic-scale precision at the active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.