<span>The given paper presents a hybrid electromagnetic suspension designed for high-speed vacuum transport, where the main levitation force is generated by permanent magnets, while the electromagnet controls the air gap. The computer model is designed by means of MATLAB/Simulink software package, which allows us to simulate the dynamic operational modes of the system. The calculated studies are carried out when the vehicle accelerating to 1000 km/h with account of track irregularities. Permanent magnets incorporated in the system of electromagnetic suspension make it possible to reduce the energy consumption needed for levitation force generation. </span>
The article gives the experimental results of the processes occurring in the combined system of traction and magnetic suspension, which was implemented on the basis of the linear switched reluctance motor. The goal of the research is to examine the possibility to combine the levitation and traction functions within one unit. The full-function physical model of the transport system with the magnetic suspension has been produced for experimental verification of the development concept for the combined system of traction and magnetic suspension. The research tests have been performed at the track structure with the limited length in order to study the processes, occurring in the most complicated start-up mode, when the discrete behavior of current in windings has the disturbance effect on the object levitation. The oscillograms of electromechanical transition processes, showing the mutual influence of traction subsystems and a suspension, are provided. The results of researches have illustrated dramatically that the development concept of the combined system of traction and magnetic suspension, based on the linear switched reluctance motor, is absolutely real. Further researches should be aimed at improving the system characteristics by reducing the mutual influence of levitation and traction processes.
Below is given the brief analysis of development trend for vehicle traction levitation systems with magnetic suspension. It is presented the assessment of potential development of traction levitation systems in terms of their simplicity. The examples are considered of technical solutions focused on reducing the complexity of transport systems. It is proposed the forecast of their further development.
The investigation of the influence of the number of phases of switched reluctance generator (SRG) to the pulse of electromagnetic torque was carried out. The computer model was created. The amplitude of torque ripples reduces to 6 times with increasing of the ripple frequency to 5 times, that is more acceptable in terms of requirements.
Keyword:Computer Electrical machines used on vehicles operate in severe conditions. During operation they are affected by significant dynamic forces resulting from vibration and shock particularly at high running speeds. It can cause to various failures: wires and winding connection disruption, cracking and insulating materials damage. For this reason when choosing electrical machines design there is a tendency to use simple and reliable technical solutions.From this point of view the main advantage of SRM is the design simplicity. The rotor is passive without winding and the stator is equipped with winding consisting of centered type coils. In comparison with other types of electrical machines, SRM is more sophisticated, has less specific consumption of cooper and insulating materials. In case of SRM application on the vehicles, it will allow to improve the reliability of energy supply system, to achieve better energy and weight-size parameters, to reduce the cost and operation expenses. The disadvantages of SRM are considerable electromagnetic torque ripple and higher noise level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.