Substantial agreement for QC assessment was achieved with aid of the OSCAR-IB criteria. The task force has developed a website for free online training and QC certification. The criteria may prove useful for future research and trials in MS using OCT as a secondary outcome measure in a multi-centre setting.
Temporal analysis of the multifocal cortical visual evoked potential (VEP) was studied using pseudo-random (m-sequence) achromatic stimulation. The effects of variation of luminance contrast on the first-order response were complex. At low to mid contrasts (< 60%), a wave doublet (P100-N115) predominated. A second wave complex (N100-P120-N160) dominated at high contrasts. The second-order responses, however, showed an extremely simple variation with luminance contrast. Intrinsic differences in the adaptation time of the generators of these two components caused a distinct separation in the slices of the second-order response. A rapidly adapting nonlinearity saturating at low contrasts was only observable when measuring the responses from two consecutive flashes. Its latency coincided with the contrast saturating first-order response component. By comparison, the nonlinearity derived from the responses to the stimuli with longer interstimulus intervals (second and third slices) yielded a much more linear contrast response function with lower contrast gain and latencies, which clearly corresponded to the longer latency component of the first-order response. Thus, the second-order responses show a first slice which is predominantly driven by neural elements that have a latency and contrast function that mimic those of the magnocellular neurons of the primate LGN and a second slice which is dominated by a generator whose properties resemble primate parvocellular function. This division into magno and parvocellular contribution to the VEP is based on function (interaction time) as distinct from other currently available analyses, with potential for neural analysis of visual disease.
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.