Proteasome-catalyzed peptide splicing (PCPS) represents an additional activity of mammalian 20S proteasomes recently identified in connection with antigen presentation. We show here that PCPS is not restricted to mammalians but that it is also a feature of yeast 20S proteasomes catalyzed by all three active site  subunits. No major differences in splicing efficiency exist between human 20S standard-and immuno-proteasome or yeast 20S proteasome. Using H 2 18 O to monitor the splicing reaction we also demonstrate that PCPS occurs via direct transpeptidation that slightly favors the generation of peptides spliced in cis over peptides spliced in trans. The 20S proteasome with its proteolytically active site -subunits (1, 2, and 5) is a N-terminal nucleophilic hydrolase, widely conserved during evolution from yeast to mammals. It is the central proteolytic machinery of the ubiquitin proteasome system and the catalytic core of the 26S proteasome that is built by the association of 19S regulator complexes with the 20S proteasome. As part of the 26S proteasome the 20S core degrades poly-ubiquitylated proteins to peptides of 3 to 20 residues in length (1). A small percentage of these peptides is transported to the endoplasmic reticulum, bound by major histocompatibility complex (MHC) 1 class I molecules, and presented at the cell surface to CD8ϩ cytotoxic T lymphocyte for immune recognition. This antigen presentation pathway is usually restricted to the proteasome-dependent processing of self-and viral-proteins (2). Antigen presentation is generally increased after IFN-␥ stimuli because it induces, among others, the synthesis of alternative catalytic subunits (1i, 2i, and 5i) and the concomitant formation of immunoproteasomes (i-proteasomes) (2).All active  subunits carry an N-terminal threonine residue as reactive nucleophile. Therefore, their distinct cleavage preferences are determined by the structural features of the substrate binding pockets. In particular, the nonprimed substrate binding site of the active site  subunits binds the residues of the peptide substrate that are located at the N-terminal side of the cleaved residue. The residues of the peptide located C-terminally of the cleavage site are bound by the primed substrate binding site. The binding to both substrate binding sites of the active site  subunit provides the stability and the orientation of the substrate, which is mandatory to carry out the proteolytic cleavage (3).Peptides can be produced by proteasomes during the degradation of proteins or polypeptides by conventional peptide bond hydrolysis or by proteasome-catalyzed peptide splicing (PCPS). The latter has been demonstrated in vivo so far only for four MHC class I-restricted epitopes (4 -8), leading to the assumption that PCPS is most likely a rare event that lacks any wider functional importance (9). PCPS was suggested to occur in a direct transpeptidation reaction, in either cis or trans, by linking two proteasomal cleavage products (PCPs) derived either from the same or from two ...
Background: Huntington disease is caused by an expanded polyglutamine repeat within the protein huntingtin. Results: Proteasomal degradation of mutant huntingtin fragments is devoid of polyglutamine peptides as partial cleavage products. Conclusion: Mammalian proteasomes are capable of entirely degrading expanded polyglutamine sequences. Significance: Accelerating the mutant huntingtin degradation by the proteasomal pathway obviates toxic species and represents a beneficial therapeutic strategy.
Impaired immune function contributes to the development of chronic obstructive pulmonary disease (COPD). Disease progression is further exacerbated by pathogen infections due to impaired immune responses. Elimination of infected cells is achieved by cytotoxic CD8+ T cells that are activated by MHC I-mediated presentation of pathogen-derived antigenic peptides. The immunoproteasome, a specialized form of the proteasome, improves generation of antigenic peptides for MHC I presentation thereby facilitating anti-viral immune responses. However, immunoproteasome function in the lung has not been investigated in detail yet. In this study, we comprehensively characterized the function of immunoproteasomes in the human and murine lung. Parenchymal cells of the lung express low constitutive levels of immunoproteasomes, while they are highly and specifically expressed in alveolar macrophages. Immunoproteasome expression is not altered in whole lung tissue of COPD patients. Novel activity-based probes and native gel analysis revealed that immunoproteasome activities are specifically and rapidly induced by IFNγ treatment in respiratory cells in vitro and by virus infection of the lung in mice. Our results suggest that the lung is potentially capable of mounting an immunoproteasome-mediated efficient adaptive immune response to intracellular infections.
Quantitative protein profiling is an essential part of proteomics and requires technologies that accurately, reproducibly, and comprehensively identify and quantify proteins. Over the past years, many quantitative proteomic methods have been developed. Here, 20S proteasome subtypes isolated from rat were compared by four approaches based on the combination of isotope-coded affinity tag (ICAT), 2-DE, LC and ESI and MALDI MS: (i) 2-DE, (ii) ICAT/2-DE MALDI-MS, (iii) ICAT/LC-ESI-MS, (iv) ICAT/LC-MALDI-MS. A definite qualitative advantage of 2-DE gels was the separation of all known protein species, the identification of cysteine sulfoxide of alpha-4 (RC6-IS) and N-terminal acetylation of several subunits. Furthermore, quantitative differences between the standard subunits beta-2, and beta-5 and their immunosubunits were only detected by 2-DE image analysis revealing a higher replacement of standard- by immuno-beta-subunits in subtype IV. It was obvious that for relative quantification only protein spot and mass peaks with a certain level of intensity displayed acceptable values of SD. However, ICAT in conjunction with LC/MALDI-MS was the most accurate method for quantification. The experimental data of this investigation are accessible via http://www.mpiib-berlin.mpg.de/2D-PAGE/.
These data show that different inhibitors have differential inhibitory effects on the various cardiac proteasome subtypes. Different cardiac subtypes are inhibited by the same dose of proteasome inhibitor to a different extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.